2012, Número 1
Los productos alternativos de LYT1 de Trypanosoma cruzi tienen un patrón de localización diferencial
Ballesteros-Rodea G, Santillán M, Cruz-Aguilar M, Márquez-Dueñas C, Lugo-Caballero CI, Martínez-Calvillo S, Swindle J, Manning-Cela RG
Idioma: Español/Inglés
Referencias bibliográficas: 30
Paginas: 29-43
Archivo PDF: 355.21 Kb.
RESUMEN
LYT1 es una molécula con actividad lítica en condiciones ácidas, que según se demostró genéticamente, participa en el proceso de infección y transición de estadio de
T. cruzi. Su diferente funcionalidad es resultado de la producción de dos proteínas, obtenidas por trans-empalme alternativo, que contienen una secuencia de secreción y una nuclear (LYT1s) o únicamente la secuencia nuclear (LYT1n). Para evaluar la localización de los diferentes productos de LYT1, se analizaron parásitos transgénicos que expresan la secuencia de LYT1s o LYT1n fusionada con la secuencia de la verde fluorescente. LYT1s-EGFP se localiza en flagelo, vacuolas, membrana y región del núcleo y cinetoplasto; mientras que, LYT1n-EGFP se localiza en la región del núcleo y cinetoplasto, y ocasionalmente en vesículas. Estos resultados muestran que aún cuando los distintos productos de LYT1 comparten algunos sitios de localización, también se encuentran en distintos organelos y microambientes intracelulares que podrían influir en su comportamiento multifuncional.
REFERENCIAS (EN ESTE ARTÍCULO)
BARRET MP, BURCHMORE RJ, STICH A, LAZZARI JO, FRASH AC, CAZZULO JJ et al. The trypanosomiases. Lancet 2003; 362: 1469-1480.
ESPINOZA GB, MANNING-CELA RG. An overview of mammalian cell infection immunology of parasitic diseases. Kerala, India 2007; 291-311.
MANNING-CELA R, CORTES A, GONZALEZ-REY E, VAN VOORHIS WC, SWINDLE J, GONZALEZ A. LYT1 protein is required for efficient in vitro infection by Trypanosoma cruzi. Infect Immun 2001; 69: 3916-3923.
CALER EV, VAENA DE AVALOS S, HAYNES PA, ANDREWS NW, BURLEIGH BA. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J 1998; 17: 4975-4986.
MANNING-CELA R, GONZALEZ A, SWINDLE J. Alternative splicing of LYT1 transcripts in Trypanosoma cruzi. Infect Immun 2002; 70: 4726-4728.
MANNING-CELA R, SWINDLE J. Obtención y análisis de una mutante dominante negativa de LYT1 de Trypanosoma cruzi. Siicsalud. [Serie en línea: 2003 agosto 2003] [Citado: 2003 agosto 6]; Disponible en: www.siicsalud.com/des/des032/03805024.htm.
CAMARGO EP. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Instit Med Trop Sao Paulo 1964; 12: 93-100.
VAZQUEZ MP, LEVIN MJ. Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 1999; 239: 217-225.
LAEMMLI UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-685.
MARTINEZ-CALVILLO S, VIZUET-DE-RUEDA JC, FLORENCIO-MARTINEZ LE, MANNING-CELA RG, FIGUEROA-ANGULO EE. Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010: 525241.
BENABDELLAH K, GONZALEZ-REY E, GONZALEZ A. Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein. Mol Microbiol 2007; 65: 1559-1567.
TSIEN RY. The green fluorescent protein. Annu Rev Biochem 1998; 67: 509-544.
YANG F, MOSS LG, PHILLIPS GN, JR. The molecular structure of green fluorescent protein. Nat Biotechnol 1996; 14: 1246-1251.
GULL K. The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 1999; 53: 629-655.
HUTCHINGS NR, DONELSON JE, HILL KL. Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes. J Cell Biol 2002; 156: 867-877.
KOHL L, GULL K. Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 1998; 93: 1-9.
KOHL L, BASTIN P. The flagellum of trypanosomes. Int Rev Cytol 2005; 244: 227-285.
COSSON MP, COSSON J, ANDRE F, BILLARD R. cAMP/ATP relationship in the activation of trout sperm motility: their interaction in membranedeprived models and in live spermatozoa. Cell Motil Cytoskeleton 1995; 31: 159-176.
ROBINSON DR, SHERWIN T, PLOUBIDOU A, BYARD EH, GULL K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 1995; 128: 1163-1172.
BROOKS DR, TETLEY L, COOMBS GH, MOTTRAM JC. Processing and trafficking of cysteine proteases in Leishmania mexicana. J Cell Sci 2000; 113: 4035-4041.
KOZMINSKI KG, JOHNSON KA, FORSCHER P, ROSENBAUM JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 1993; 90: 5519-5523
SOUTO-PADRON T, CAMPETELLA OE, CAZZULO JJ, DE SOUZA W. Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involve ment in parasite-host cell interaction. J Cell Sci 1990; 96: 485-490.
LUGO-CABALLERO CI. Identificación de complejos proteicos de Trypanosoma cruzi asociados a LYT1p (tesis de maestría). Departamento de Biomedicina. México DF: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2008.
ROSENBAUM JL, WITMAN GB. Intraflagellar transport. Nat Rev Mol Cell Biol 2002; 3: 813-825.
KOHL L, ROBINSON D, BASTIN P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 2003; 22: 5336-5346.
CHAMOND N, GREGOIRE C, COATNOAN N, ROUGEOT C, FREITAS-JUNIOR LH, DA SILVEIRA JF et al. Biochemical characterization of proline racemases from the human protozoan parasite Trypanosoma cruzi and definition of putative protein signatures. J Biol Chem 2003; 278: 15484-15494.
ENGEL ML, HINES JC, RAY DS. The Crithidia fasciculata RNH1 gene encodes both nuclear and mitochondrial isoforms of RNase H. Nucleic Acids Res 2001; 29: 725-731.
WAMBOLDT Y, MOHAMMED S, ELOWSKY C, WITTGREN C, DE PAULA WB, MACKENZIE SA. Participation of leaky ribosome scanning in protein dual targeting by alternative translation initiation in higher plants. Plant Cell 2009; 21: 157-167.
SILVA-FILHO MC. One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 2003; 6: 589-595.
CHEN HH, LUCHE R, WEI B, TONKS NK. Characterization of two distinct dual specificity phosphatases encoded in alternative open reading frames of a single gene located on human chromosome 10q22.2. J Biol Chem 2004; 279: 41404-41413.