2012, Número 600
<< Anterior Siguiente >>
Rev Med Cos Cen 2012; 69 (600)
Enzimas microbianas para producir moléculas con potencial uso terapéutico, el caso del Xilitol
Segura VJ, Navarrete CR
Idioma: Español
Referencias bibliográficas: 17
Paginas: 25-29
Archivo PDF: 189.27 Kb.
RESUMEN
En el marco de la búsqueda de compuestos con eventual potencial terapéutico y de uso comercial, se destacan aquellos producidos por microorganismos. Las enzimas son macromoléculas con actividades bioquímicas específicas; los procariotas y eucariotas unicelulares poseen enzimas especializadas y a partir de ellas, pueden degradar sustratos complejos, como los de origen vegetal, para obtener moléculas que pueden integrar a su metabolismo. El xilitol es un ejemplo actual de una sustancia con múltiples usos incluso de tipo terapéutico que puede mejorar la calidad de vida de muchas personas, este alcohol se ha estado obteniendo mediante el metabolismo microbiano en condiciones controladas, pero la maximización de su obtención y producción sigue siendo una fuente de arduo trabajo científico.
REFERENCIAS (EN ESTE ARTÍCULO)
Arce, L. 2004. Evaluación de la producción de xilitol a nivel de laboratorio, por vía fermentativa a partir de xilosa comercial. Proyecto de Graduación para optar por el grado de Licenciatura en Tecnología de Alimentos. Tesis no publicada. Facultad de Ciencias Agroalimentarias. Escuela de Tecnología de Alimentos. Universidad de Costa Rica-Sede Rodrigo Facio, San José. Costa Rica.
Aslam, M., Paul–Torrence, G. & Zey E. 2005. Enzyme Applications. En: Kirk–Othmer Encyclopedia of Chemical Technology. (5th Ed.), (pp 249, 250, 253 y 278). United States of America: Wiley–Interscience. John Wiley & Sons, Inc.
Blanco, J. 2004. Análisis de la actividad enzimática de aislamientos bacterianos obtenidos de diferentes estadios del ciclo de vida y materiales relacionados a Rothschildia lebeau (Lepidoptera: Saturniidae). Trabajo Final de Graduación modalidad Investigación para optar por el grado de Licenciatura en Microbiología y Química Clínica. Tesis no publicada. Facultad de Microbiología. Universidad de Costa Rica-Sede Rodrigo Facio, San José. Costa Rica.
Caporale, S. 1995. Chemical ecology: A view from pharmaceutical industry. Proc. Nat. Acad. Sci. USA. (92), 75–82.
Cunningham, R. & López, G. 2004. Etanol de lignocelulósicos, tecnologías y perspectivas. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). Universidad de Santiago de Compostela-Santiago. Chile.
Ehrensberger, A., Elling, R. & Wilson, D. 2006. Structure–Guided Engineering of Xilitol Dehydrogenase Cosubstrate Specificity. Structure. (14), 567–575.
Ganström, T. 2002. Biotechnological production of xylitol with Candida yeasts. Dissertation for the degree of Doctor in Philosophy. Tesis no publicada. Helsinki University of Technology. Finland.
Kang, M., Ni, H. & Jeffries, T. 2003. Molecular Characterization of a Gene for Aldose Reductase (CbXYL1) from Candida boidinii and Its Expression in Saccharomyces cervisiae. Applied Biochemistry and Biotechnology. (105–108), 265–276.
Kim, Y., Kim, S., Kim, J. & Kim, S.C. 1999. Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal δ–sequences. Journal of Biotechnology. (67), 159–171.
Lee, W., Ryu, Y. & Seo, J. 2000. Characterization of two–substrate fermentation processes for xilitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochemistry. (35), 1199–1203.
Leitgeb, S., Petschacher, B., Wilson, D. & Nidetzky, B. 2005. Fine tuning of coenzyme specificity in family 2 aldo– keto reductases revealed by crystal structures of the Lys–27→Arg mutant of Candida tenuis xylose reductase (AKR2B5) bond to NAD+ and NADP+. Federation of European Biochemical Societies Letters. (579), 763–767.
Polizeli, M., Rizzatti, A., Monti, R., Terenzi, H., Jorge, J. & Amorim, D. 2005. Mini Review. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. (67), 577–591.
Rolle, R.S. 1998. Enzyme applications for agro–processing in developing countries: an inventory of current potencial applications. World J. Microbiol. Biotech. (14), 611–619.
Silva, S.S., Chanto, Q.A., Vitolo, M., Felipe, M. & Mancilla, I. 1999. Preliminary Information About Continuous Fermentation Using Cell Recycling for Improving Microbial Xilitol Production Rates. Applied Biochemistry and Biotechnology. (77–79), 571–575.
Silva, S.S., Quesada–Chanto, A. & Vitolo, M. 1997. Upstream Parameters Affecting the Cell Growth and Xylitol Production by Candida guillermondi FTI 20037. Verlag del Zeitschrift für Naturforschung. (52c), 359–363.
Uhlig, H. (2003). Enzymes. En: Ullmann´s Encyclopedia of Chemical Chemistry. (6th Ed.), (pág. 108). Weinheim: Wiley–VCH Verlag GMBH & Co. KGaA. Federal Republic of Germany.
Waldmann, H. y Whitesides, G. 2003. Industrial Uses of Enzymes. En: Ullmann´s Encyclopedia of Chemical Chemistry. (6th Ed.), (pp. 153–155). Weinheim: Wiley–VCH Verlag GMBH & Co. KGaA. Federal Republic of Germany.