2011, Número 3
<< Anterior Siguiente >>
Arch Neurocien 2011; 16 (3)
Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio)
Nava-Ruíz C, Méndez-Armenta M
Idioma: Español
Referencias bibliográficas: 77
Paginas: 140-147
Archivo PDF: 106.80 Kb.
RESUMEN
A pesar de los esfuerzos y avances científicos la exposición de los humanos a metales tóxicos continua, estos constituyen un riesgo para la salud pública principalmente en países en vías de desarrollo. El plomo, cadmio y talio son metales que se encuentran en el aire y agua como contaminantes ambientales y se asocian con múltiples efectos adversos en la salud; siendo varios los órganos y sistemas que se ven afectados por los metales tales como: riñón, pulmón, hígado sistema gastrointestinal y hematopoyético, pero principalmente el sistema nervioso central y periférico. La severidad y el daño de estos metales dependen del tiempo, nivel de exposición, susceptibilidad de la persona y además de la ruta por la cual el metal sea absorbido. Una variedad de mecanismos han sido atribuidos a la toxicidad de los metales pesados, pero con frecuencia están relacionados con la generación de radicales libres y disminución en el funcionamiento de enzimas antioxidantes ocasionando un incremento en el estrés oxidativo celular. Esta revisión pretende establecer algunos de los posibles mecanismos celulares por medio de los cuales los metales son capaces de inducir neurotoxicidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Beijer K, Jernelov A. Sources, transport and transformation of metals in the environment. En: Friberg L, Nordberg GF, Vouk VB, editores. Handbook on the Toxicology of metals. General Aspects. Amsterdam, 1986;68-74.
Järup L. Hazards of heavy metal contamination. Brit Med Bull 2003; 68:167-82.
Agency for Toxic Substance and Disease Registry, Toxicological Profile for Cadmium, U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta, GA. 2008.
Goyer AR. Toxic metals and essential metal interactions. Annu Rev Nutr 1997;17:37-50.
Saldivar RL, Luna M, Reyes E, Soto R, Fortul T. Cadmium determination in Mexican-produced tobacco. Environ Res 1991; 55:91-6.
Stohs SJ, Bagchi D, Bagchi M. Toxicity of trace elements in tobacco smoke. Inhal Toxicol 1997;9:867-90.
Valko M, Morris H, Cronin MTD. Metals toxicity and oxidative stress. Curr Med Chem 2005;12:1161-208.
Goyer RA, Clarsksom WT.Toxic effects of metals. En: Klaassen CD editor. Casarett and Doull’s Toxicology. The basic Science of poisons. New York: McGraw-Hill, 2001;811-67.
Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infraction. Altern Ther Helath Med 2007;13:S128-S33.
Méndez-Armenta M, Ríos C. Cadmium neurotoxicity. ETAP 2007; 23:350-8.
Gwalteney-Brant SM. Heavy Metals. En: Haschek WM, Rosseaux CG, Wallig AM, editors. Handbook of Toxicologic Pathology. New York. Academic Press 2002:701-32.
Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport to toxic metals. Toxicol Appl Pharmacol 2005;204:274-308.
Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 2008;128: 501-23.
Penkowa M. Metallothionein I+II expresión and roles during neuropathology in the CNS. Dan Med Bull 2006;53:105-21.
Viarengo AS, Nicotera P. Posible role of Ca2+ in the heavy metal cytotoxicity. Comp Biochem Physiol 1991;100:81-4.
Gutierrez-Reyes EY, Albores A, Rios C. Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone induced metallothionein. Toxicology 1998;131: 145-54.
Lafuente A, Fernández-Rey E, Seara R, Pérez-Lorenzo E, Esquifino AI. Alternate cadmium exposure diferentially effects amino acid metabolism within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Neurochem Int 2001;39:187-92.
Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifino AI. Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp Brain Res 2003; 149: 200-6.
Esquifino AI, Seara R, Fernández-Rey E, Lafuente A. Alternate cadmium exposure differentially affects the content of gammaaminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal. Arch Toxicol 2001; 75:127-33.
Manca D, Ricard AC, Trotter B, Chevalier G. Studies for lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology 1991;67:303-23.
Antonio MT, Corredor L, Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 2003;143: 331-40.
Méndez-Armenta M, Villeda-Hernández J, Barroso-Moguel R, Nava-Ruíz C, Jiménez-Capdeville ME, Ríos C. Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone. Toxicol Lett 2003; 144: 151-7.
López E, Figueroa S, Oset-Gasque MJ, González MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 2003;138:901-11.
Wong KL, Klaassen DC. Neurotoxic effects of cadmium in young rats. Toxicol Appl Pharmacol 1982;63:330-7.
Méndez-Armenta M, Barroso-Moguel R, Villeda-Hernández J, Nava-Ruíz C, Rios C. histopathological alterations in the brain regions of rats after perinatal combined treatment with cadmium and dexamethasone. Toxicology 2001;161:189-199.
Provias JP, Ackerley CA, Smith C, Becker LE. Cadmium encephalopaty: a report with elemental analysis and pathological findings. Acta Neuropathol Berl 1994;88:583-6.
Thatcher RW, Lester ML, McAlaster R, Horts R. Effects of low levels of cadmium and lead on cognitive function in children. Arch Environ Health 1982;37:159-66.
Hart RP, Rose CS, Hamer RM. Neuropsychological effects of occupational exposure to cadmium. J Clin Experim Neuropsych 1989;11: 933-43.
Agency for Toxic Substance and Disease Registry. Toxicological Profile for Lead, U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta, GA. 2005.
Goyer RA. Lead Toxicity: current concerns. Environ Health Perspect 1993;100:177-87.
Papanikolaou CN, Hatzidaki GE, Belivanis S, Tzanakakis GN, Tsatsakis MA. Lead toxicity update. A brief review. Med Sci Monit 2005;11: RA329-36.
Kakkar P, Jaffery NF. Biological markers for metal toxicity. ETAP 2005; 19: 335-49.
Bellinger DC, Bellinger MA. Childhood lead poisoning: the torturous path from science to policy. J Clin Invest 2006; 116: 853-7.
Toscano CD, Guilarte RT. Lead neurotoxicity: from exposure to molecular effects. Brain Res Rev 2005;49:529-54.
Nava-Ruíz C, Alcaraz-Zubeldia M, Méndez-Armenta M, Vergara P, Díaz-Ruíz A, Rios C. Nitric oxide synthase immunolocalization and expresión in the rat hippocampus after sub-acute lead acetate exposure in rats. Exp Toxicol Pathol 2010;62:311-6.
Garza A, Chávez H, Vega R, Soto E. Mecanismos celulares y moleculares de la neurotoxicidad por plomo. Salud Mental 2005; 28:48-58.
Villeda-Hernández J, Barroso-Moguel R, Méndez-Armenta M, Nava-Ruíz C, Huerta-Romero R, Rios C. Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain Res Bull 2001;55:247-51.
Soltaninejad K, Kebriaeezadeh A, Minaiee B, Ostad NS, Hosseini R, Azizi E, et al. Biochemical and ultraestructral evidences for toxicity of lead through free radicals in rat brain. Hum Exp Toxicol 2003;22:417-23.
Costa LG, Aschner M, Vitalone A, Syversen T, Soldin PO. Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 2004;44:87-110.
NourEddine D, Miloud S, Abdelkader A. Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology 2005; 207:363-8.
Struzynska L, Bubko I, Walski M, Rafalowska U. Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology 2001;165:121-31.
Rodríguez VM, Jiménez-Capdeville ME, Giordano M. The effects of arsenic exposure on the nervous system. Toxciol Lett 2003; 145: 1-18.
Agency for Toxic Substance and Disease Registry. Toxicological Profile for Arsenic U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta, GA, 2003.
Environmental Protection Agency (EPA). Integrated Risk Information Systems (IRIS) on Arsenic. National Center for Environmental Assessment, Office of Research and Development Washington DC. 1999.
Abernathy OCh, Thomas DJ, Calderon LR. Health effects and risk assessment of arsenic. J Nutr 2003; 133: 536S-1538S.
Thomas JD, Styblo M, Lin S. The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 2001;176:127-44.
Abernathy OCh, Liu YP, Longfellow D, Aposhian VH, Beck B, Fowler B, et al. Arsenic: Health effects mechanisms of actions and research issue. Environ Health Perspect 1999;107:593-7.
Zang TL, Gao YX, Lu JF, Wang K. Arsenite, arsenate and vanade affect human erythrocyte membrane. J Inorg Biochem 2000;79: 195-203.
Kannan GM, Tripathi N, Dube SN, Gupta M, Flora SJ. Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs. J Toxicol Clin Toxicol 2001; 39: 675-82.
Flora SJS, Bhadauria TS, Pant SC, Dhaked RK. Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci 2005; 77: 2324-37.
Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 2001;1: 529-39.
Ríos R, Zarazúa S, Santoyo ME, Sepúlveda-Saavedra J, Romero- Díaz V, Jiménez V, et al. Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 2009;261:68-75.
Dong Z. The molecular mechanisms of arsenic-induced cell transformation and apoptosis. Environ Health Perspect 2002; 110(Suppl.5):757-9.
Hartwig A, Pelzer A, Asmuss M, Burkel A. Very low concentrations of arsenite suppress poly ADP-ribosylation in mammalian cells. International J Cancer 2003;104:1-6.
Goebel HH, Schmidt PF, Bohl J, Tettenborn B, Kramer G, Gutman L. Polyneuropathy due to acute arsenic intoxication; biopsy studies. J Neuropathol Exp Neurol 1990;49:137-49.
Greenberg SA. Acute demyelinating polyneuropathy with arsenic ingestion. Muscle Nerve 1996;19:1611-3.
Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, et al. Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 2001;85:69-76.
Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 2007;102:204-11.
Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, Dufour L, Giordano M. The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 2001;55:301-8.
Agency for Toxic Substance and Disease Registry. Toxicological Profile for Thallium U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta, GA. 1999.
Galván-Arzate S, Santamaria A. Thallium toxicity. Toxicol Lett 1998; 99: 1-13.
Moore D, House I, Dixon A. Thallium poisoning. Br Med J 1993; 306:1527-9.
Repetto G, Del Peso A, Repetto M. Human thallium toxicity. En: Nriagu J. editor. Thallium in the Environment. Advances in Environmental Science and Technology. USA: Wiley, 1998:167-99.
Tromme I, Van Neste D, Dobbelaere F, Bouffioux B, Courtin C, Dugernier T, et al. Skin signs in the diagnosis of thallium poisoning. J Dermatol 1998;138:321-5.
Tsai YT, Huang CC , Kuo HC, Wang HM, Shen WS, Shih TS, Chu NS. Central nervous system effects in acute thallium poisoning. Neurotoxicology 2006;27:291-5.
Mulkey JP, Oehme FW. A review of thallium toxicity. Vet Human Toxicol 1993;35:445-53.
Hanzel CE, Verstraeten SV. Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol 2006;216:485-92.
Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, et al. Delayed effects of thallium in the rat brain: Regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 2005; 43:1037-45.
Puga MLC, Verstraeten VS. Thallium (III)-mediated changes in membrane physical properties and lipid peroxidation affect cardiolipin-cytochrome c interactions. Biochem Biophys Act 2008;1778:2157-64.
Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 2003;139:125-33.
Galván-Arzate S, Martínez A, Medina E, Santamaría A, Ríos C. Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicol Lett 2000;116:37-43.
Osorio-Rico L, Galván-Arzate S, Ríos C. Thallium increases monoamine oxidase activity and serotonin turnover rate in rat brain regions. Neurotoxicol Teratol 1995;17:1-5.
Prick JJG. Thallium poisoning. En: Vinken PJ, Bruyn, G.W. editopres. Handbook of Clinical Neurology. En: intoxication of the nervous system. New York: North-Holland 1979;36:239-78.
Dimitru D, Kalantri A. Electrophysiologic investigation of thallium poisoning. Muscle Nerve 1990;13:433-7.
Van Kesteren RG. Thallium. En: Vinken DJ, Bruyn GW, de Wolff FA., editores. Handbook of clinical neurology, intoxication of the nervous system. Amsterdam: Elsevier, North-Holland. Biochemical Press 1994;(64)322-9.
Yokoyama K, Araki S, Abe H. Distribution of nerve conduction velocities in acute thallium poisoning. Muscle Nerve 1990;13:117-20.
Davis LE, Standefer JC, Kornfeld M, Abercrombie DM, Butler C. Acute thallium poisoning: toxicological and morphological studies of the nervous system. Ann Neurol 1981;10:38-44.