2001, Número 2
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2001; 22 (2)
Técnicas de asistencia para la recuperación de la locomoción funcional después de una lesión de médula espinal
Villanueva D, Muñoz R, Hernández PR
Idioma: Español
Referencias bibliográficas: 98
Paginas: 89-100
Archivo PDF: 110.12 Kb.
RESUMEN
En el presente trabajo, se hace una revisión de algunos métodos actuales para la recuperación de la locomoción en pacientes con lesión de médula espinal. La revisión está enfocada hacia la disponibilidad, alcances y limitaciones de cada uno de los métodos descritos. Los esfuerzos y trabajos desarrollados, a lo largo de los últimos 30 años, encaminados al proceso de rehabilitación de pacientes con SCI, se pueden agrupar como: ortesis pasivas, ortesis activas, estimulación eléctrica funcional (FES), ortesis híbridas y re-entrenamiento sobre caminadora. Actualmente, las ortesis pasivas representan la única alternativa disponible, para que un paciente parapléjico, pueda mantener una posición vertical y recuperar parcialmente la locomoción funcional. En la actualidad el principal reto en clínica es el gran rechazo para continuar usando una ortesis, por parte de pacientes que inician un proceso de rehabilitación física y entrenamiento. Las áreas de necesidad y desarrollo de trabajos futuros están enfocándose hacia sistemas que proporcionen independencia de locomoción, que tengan un bajo costo metabólico y que incorporen actuadores con una alta densidad de potencia, que ayuden a disminuir el peso sin sacrificar potencia. El uso de sistemas de entrenamiento locomotor, con el cuerpo parcialmente soportado está demostrando que puede ser considerada como una excelente alternativa para lograr la recuperación de la locomoción funcional. Los diseñadores deben enfocarse en cubrir las necesidades del usuario, pensando principalmente en los beneficios funcionales.
REFERENCIAS (EN ESTE ARTÍCULO)
NSCISC (National Spinal Cord Injury Statistical Center), “Spinal Cord Injury Facts and Figures at a Glance” May, 2001, http://www.spinalcord.uab.edu/show.asp?durki=19679
Eastwood EA, Hagglund KJ, Ragnarsson KT, Gordon WA, Marino RJ. Medical rehabilitation length of stay and outcomes for persons with traumatic spinal cord injury-1990-1997, Arch Phys Med Rehabil 1999; 80(11): 1457-1463.
McKinley WO, Jackson AB, Cardenas DD, DeVivo MJ. Long-term medical complications after traumatic spinal cord injury: a regional model systems analysis. Arch Phys Med Rehabil 1999; 80(11): 1402-1410.
Spahn E. “Knee and ankle brace”, U.S. Patent 1913; 1: 072 369.
Bobechko WP, McLaurin and Motloch W. “Toronto Orthosis for Legg-Perthes Disease”. Artificial Limbs, 1968; 12(2): 36-41.
Motloch W. “Reciprocating Gait Brace Cord & Pulley Type”. Contributions to report from the Fourth Workshop Panel on Lower Extremity Orthotics. National Academy of Sciences. 1967.
Bowker P, Messenger N, Ogilvie C, Rowley DI. Energetics of paraplegic walking. Coment in J Biomed Eng 1993;15(1): 83. J Biomed Eng 1992;14(4): 344-50.
WB Saunders Company. Dorland’s illustrated medical dictionary. Edition: 28th edition, 1994.
Yngve DA, Douglas R, Roberts JM. “The reciprocating gait orthosis in myelomeningocele”. J Pediatr Orthop 1984; 4(3): 304-310.
Butler PB, Major RE, Patrick JH. “The technique of reciprocal walking using the hip guidance orthosis (hgo) with crutches” Prosthet Orthot Int 1984; 8(1): 33-38.
Anderson MH, Bray JJ. “The UCLA functional long leg brace” Clin Orthop 1964; 37: 98-109.
Motloch W. “New Items for the Spina Bifida Program”. Inter-Clinic Information Bulletin, 1970: 10-13.
Prast MT. “Parapodium for adult paraplegics.” Bull Prosthet Res 1974: 391-403.
Motloch W. “The parapodium: an orthotic device for neuromuscular disorders”. Artif Limbs 1971; 15(2): 36-47.
Motloch W. “The Parapodium”. Report Published by the Ontario Crippled Children’s Centre, 1971.
Motloch W. “Reciprocating gait orthosis (RGO) a historical review” in Journal Proceedings of Academy Scientific Symposium, 1999.
Solomonow M et al. “Evaluation of 70 paraplegic patients treated with the reciprocating gait orthosis powered by muscle stimulation.” Medscape Ortho & Sports Medicine. 1999: 3(3).
D’Ambrosia R, Solomonow M, Baratta RV. Current status of walking orthoses for thoracic paraplegics., Iowa Orthop J 1995; 15: 174-81.
Sykes L, Campbell IG, Powell ES, Ross ER, Edwards J. “Energy expediture of walking for adult patients with spinal cord lesion using the reciprocating gait orthosis and functional stimulation” Spinal Cord, 1996; 34(11): 659-665.
Yang L, Granat MH, Paul JP, Condie DN, Rowley DI. Further development of hybrid functional electrical stimulation orthoses. Artif Organs 1997; 21(3): 183-7.
Kornbluh R, Pelrine R Eckerle J, Joseph J. “Electrostrictive Polymer Artificial Muscle Actuators”, presented at the 1998 International Conference on Robotics and Automation (ICRA ‘98), Leuven, Belgium.
Kornbluh R, Pelrine R, Shastri SV, Full RJ, Meijer K. 2000. “Artificial muscle actuators for exoskeletons”, presented at the DARPA-sponsored Exoskeletons for Human Performance Augmentation (EHPA) Workshop, Herndon, Virginia (March).
Downes CG, Hill SL, Gray JO. “Distributed control of an electrically powered hip orthosis”, in Conference Publication No. 389 IEE, Control ’94, 1994: 21-24.
Belforte G, Gastaldi L, Sorli M. “Pneumatic Active Gait Orthosis”. Mechatronics, 2001; 11(3): 301-323.
Yang PC. “A study of electronically controlled orthotic knee joint systems”, Ph. D. dissertation, The Ohio State Univ., Columbus, OH, 1975.
Goldfarb M, Durffe WK. “Design of a controlled-brake orthosis for FES-aid gait”, IEEE Trans. Rehabilitation Eng. 1996; 4(1): 13-24.
Salort GJ. “External apparatus for verticsl stance and walking for those with handicapped motor system of the lower limbs”, US Patent 4 1983: 422 453.
Irby SE et al. “Optimization and application of a wrap-spring cluth to a dynamic knee-ankle-foot orthosis”, IEEE Transactions on Rehab. Engin 1999: 7(2).
Irby SE, Kaufman KR, Mathewson JW, Sutherland DH. Automatic control design for a dynamic knee-brace system. IEEE Trans Rehabil Eng 1999; 7(2): 135-139.
Yano H, Kaneko S, Nakazawa K, Yamamoto SI, Bettoh A. “A new concept of dynamic orthosis for paraplegia: the weight bearing control (WBC) orthosis”. Prosthet Orthot Int 1997; 21(3): 222-8.
Bar-Cohen Y, Leary S. “Electroactive polymers as artificial muscles changing robotics paradigms” National Space and Missile Materials Symposium, 27 Feb. to 2 March 2000, San Diego, C.A. NSMMS © 2000.
Harvey LA, Davis GM, Smith MB, Engel S. Energy expenditure during gait using the walkabout and isocentric reciprocal gait orthoses in persons with paraplegia. Arch Phys Med Rehabil 1998; 79(8): 945-949.
Sonoda S, Imahori R, Saitoh E, Tomita Y, Domen K, Chino N. Clinical application of the modified medially-mounted motor-driven hip gear joint for paraplegics. Disabil Rehabil 2000; 22(6): 294-7.
Stallard J, Major RE, Patrick JH. A review of the fundamental design problems of providing ambulation for paraplegic patients. Paraplegia 1989; 27(1): 70-75.
Massucci M, Brunetti G, Piperno R, Betti L, Franceschini M. “Walking with the advanced reciprocating gait orthosis (ARGO) in thoracic paraplegic patients: energy expenditure and cardiorespiratory performance”. Spinal Cord 1998; 36(4): 223-7.
Cybulsky G, Penn R, Jaeger R. “Lower extremity functional neuromuscular stimulation in cases of spinal cord injury.” Neurosurgery 1984; 15(1): 132-146.
Marsolais E, Kobetic. “Functional walking in paralyzed patients by means of electrical stimulation”. Clin Orthop 1983; 175: 30-36.
Pappas IP, Popovic MR, Keller T, Dietz V, Morari M. A reliable gait phase detection system. IEEE Trans Neural Syst Rehabil Eng 2001; 9(2): 113-25.
Popovic MR, Keller T, Pappas IP, Dietz V, Morari M. Surface-stimulation technology for grasping and walking neuroprosthesis. IEEE Eng Med Biol Mag 2001; 20(1): 82-93.
Crago PE, Lan N, Veltink PH, Abbas JJ, Kantor C. New control strategies for neuroprosthetic systems. J Rehabil Res Dev 1996; 33(2): 158-72.
Kantrowitz A. “Electronic physiologic aids, Report of the Maimonides Hospital, Brooklyn, 1963.
Gracanin F. Functional electrical stimulation in control of motor output and movements. Electroencephalogr Clin Neurophysiol Suppl 1978; (34): 355-368.
Trnkoczy A, Stanic U, Malezic M. “Present state and prospects in the design of multichannel FES stimulators for gait correction in paretic patients”. TIT J Life Sci 1978; 8(1-2): 17-27.
Kralj A, Vodovnik L. Functional electrical stimulation of the extremities: part 1. J Med Eng Technol 1977; 1(1): 12-15.
Kralj A, Bajd T, Turk R, Krajnik J, Benko H. Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. J Rehabil RD 1983; 20(1): 3-20.
Kralj A, Bajd T, Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop 1988; (233): 34-43.
Petrofsky JS et al. “Leg exerciser for training of paralysed muscle by closed-loop control”. Med Biol Eng Comp 1984: 22: 298.
Nene AV, Jennings SJ. Hybrid paraplegic locomotion with the ParaWalker using intramuscular stimulation: a single subject study. Paraplegia 1989; 27(2): 125-32.
Kralj A, Bajd T, Turk R. Electrical stimulation providing functional use of paraplegic patient muscles. Med Prog Technol 1980; 7(1): 3-9.
van Griethuysen CM, Paul JP, Andrews BJ, Nicol AC. Biomechanics of functional electrical stimulation. Prosthet Orthot Int 1982; 6(3): 152-6.
Dietz V. [Focus on current research: improving the mobility of paraplegic patients]. Schweiz Med Wochenschr 2000; 130(22): 829-36.
Wu G, Ladin Z. The study of kinematic transients in locomotion using the integrated kinematic sensor. IEEE Trans Rehabil Eng 1996; 4(3): 193-200.
Baer HR, Wolf SL. Modified emory functional ambulation profile: an outcome measure for the rehabilitation of poststroke gait dysfunction. Stroke 2001; 32(4): 973-979.
Yim-Chiplis PK, Talbot LA. Defining and measuring balance in adults. Biol Res Nurs 2000; 1(4): 321-331.
Schindl MR, Forstner C, Kern H, Zipko HT, Rupp M, Zifko UA. Evaluation of a German version of the Rivermead Mobility Index (RMI) in acute and chronic stroke patients. Eur J Neurol 2000; 7(5): 523-8.
Stein RB. Functional electrical stimulation after spinal cord injury. J Neurotrauma 1999; 16(8): 713-7.
Granat MH, Ferguson AC, Andrews BJ. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury—observed benefits during gait studies. Paraplegia 1993; 31(4): 207-15.
Wieler M, Stein RB, Ladouceur M, Whittaker M, Smith AW, Naaman S, Barbeau H, Bugaresti J, Aimone E. Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil 1999; 80(5): 495-500.
Popovic MR, Curt A, Keller T, Dietz V. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001; 39(8): 403-412.
Shimada Y, Sato K, Matsunaga T, Tsutsumi Y, Misawa A, Ando S, Minato T, Sato M, Chida S, Hatakeyama K. Closed-loop control using a stretch sensor for restoration of standing with functional electrical stimulation in complete paraplegia. Tohoku J Exp Med 2001; 193(3): 221-227.
Graupe D, Suliga P, Prudian C, Kohn KH. Stochastically-modulated stimulation to slow down muscle fatigue at stimulated sites in paraplegics using functional electrical stimulation for leg extension. Neurol Res 2000; 22(7): 03-4.
Matjacic Z, Jensen PL, Riso RR, Voigt M, Bajd T, Sinkjaer T. Development and evaluation of a two-dimensional electrocutaneous cognitive feedback system for use in paraplegic standing. J Med Eng Technol 2000; 24(5): 215-26.
Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 2001; 82(6): 818-24.
Bonaroti D, Akers J, Smith BT, Mulcahey MJ, Betz RR. A comparison of FES with KAFO for providing ambulation and upright mobility in a child with a complete thoracic spinal cord injury. J Spinal Cord Med 1999; 22(3): 159-66.
Neopraxis Pty Ltd. 14 Mars Road, Lane Cove NSW 2066, Australia. info@neopraxis.com.au.
Neopraxis, en internet, http://www.neopraxis.com.au/clinical_trial.htm, julio 2001.
Kobetic R, Triolo RJ, Uhlir JP, Bieri C, Wibowo M, Polando G, Marsolais EB, Davis JA Jr, Ferguson KA. Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report. IEEE Trans Rehabil Eng 1999; 7(4): 390-398.
Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sorensen F. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil 1998; 79(9): 1133-1136.
Wood DE, Dunkerley AL, Tromans AM. Results from bone mineral density scans in twenty-two complete lesion paraplegics. Spinal Cord 2001; 39(3): 145-148.
Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M. Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 2001; 39(4): 208-214.
Bajd T, Kralj A, Stefancic M, Lavrac N. “Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients”. Artif Organs 1999; 23(5): 403-409.
Maxwell DJ, Granat MH, Baardman G, Hermens HJ. “Demand for and use of functional electrical stimulation systems and conventional orthoses in the spinal lesioned community of the UK”. Artif Organs 1999; 25(5): 410-412.
Popovic D, Stein RB, Oguztoreli N, Lebiedowska M, Jonic S. “Optimal control of walking with functional electrical stimulation: a computer simulation study”. IEEE Trans Rehabil Eng , 1999; 7(1): 69-79.
Prentice SD, Patla AE, Stacey DA. Artificial neural network model for the generation of muscle activation patterns for human locomotion. J Electromyogr Kinesiol 2001; 11(1): 19-30.
Su FC, Wu WL. Design and testing of a genetic algorithm neural network in the assessment of gait patterns. Med Eng Phys 2000; 22(1): 67-74.
Tong KY, Granat MH. Reliability of neural-network functional electrical stimulation gait-control system. Med Biol Eng Comput 1999; 37(5): 633-8.
Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, Sherwood AM. Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch Phys Med Rehabil 2001; 82(6): 825-31.
Hesse S, Werner C, Bardeleben A, Barbeau H. Body weight-supported treadmill training after stroke. Curr Atheroscler Rep 2001; 3(4): 287-94.
Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 2001; 82(6): 818-24.
Barbeau H, Wainberg M, Finch L. “Description and application of a system for locomotor rehabilitation”. Med Biol Eng Comput 1987; 25(3): 341-344.
Norman KE, Pepin A, Ladouceur M, Barbeau H. A treadmill apparatus and harness support for evaluation and rehabilitation of gait. Arch Phys Med Rehabil 1995; 76(8): 772-778.
Wilson MS, Qureshy H, Protas EJ, Holmes SA, Krouskop TA, Sherwood AM. Equipment specifications for supported treadmill ambulation training. J Rehabil Res Dev 2000; 37(4): 415-422.
Gazzani F, Fadda A, Torre M, Macellari V. WARD: a pneumatic system for body weight relief in gait rehabilitation. IEEE Trans Rehabil Eng 2000; 8(4): 506-13.
Farley CT, McMahon TA. Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol 1992; 73(6): 2709-2712.
Dubuc R, Cabelguen JM, Rossignol S. Rhythmic antidromic discharges of single primary afferents recorded in cut dorsal root filaments during locomotion in the cat. Brain Res 1985; 359(1-2): 375-378.
Fleshman JW, Lev-Tov A, Burke RE. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity. Exp Brain Res 1984; 54(1): 133-149.
Orsal D, Cabelguen JM, Perret C. Interlimb coordination during fictive locomotion in the thalamic cat. Exp Brain Res 1990; 82(3): 536-546.
Pratt CA, Buford JA, Smith JL. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles. J Neurophysiol 1996; 75(2): 832-842.
Rossignol S, Chau C, Brustein E, Giroux N, Bouyer L, Barbeau H, Reader TA. Pharmacological activation and modulation of the central pattern generator for locomotion in the cat. Ann N Y Acad Sci 1998; 860: 346-59.
Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther 1991; 71(11): 842-55; discussion 855-856.
Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998; 29(6): 1122-1128.
Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001; 39(5): 252-255.
92 Wickelgren I. Teaching the spinal cord to walk. Science 1998; 16;279(5349): 319-321.
Field-Fote EC. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Phys Ther 2000; 80(5): 477-84.
Burke RE, Degtyarenko AM, Simon ES. Patterns of Locomotor drive to motoneurons and Last-Order Interneurons: Clues to the Structure of the CPG. J Neurophysiol 2001; 86: 447-462.
Duysens J, Clarac F, Cruse H. Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 2000; 80(1): 83-133.
Dietz V, Duysens J. Significance of load receptor input during locomotion: a review. Gait Posture 2000; 11(2): 102-110.
Dietz V, Nakazawa K, Wirz M, Erni T. Level of spinal cord lesion determines locomotor activity in spinal man. Exp Brain Res 1999; 128(3): 405-409.