2011, Número 3
<< Anterior Siguiente >>
Neumol Cir Torax 2011; 70 (3)
Visión general de la neurobiología y genética en la adicción a la nicotina
Pérez-Rubio G, Urdapilleta HE, Camarena Á, Reséndiz-Hernández JM, Méndez GM, Ramírez VA, Sansores RH, RFalfán-Valencia R
Idioma: Español
Referencias bibliográficas: 41
Paginas: 179-187
Archivo PDF: 115.60 Kb.
RESUMEN
La adicción es una enfermedad compleja, afecta al sistema nervioso central, está constituida por un conjunto de síntomas y signos característicos. El origen de la adicción es multifactorial. En el presente artículo se abordan tres aspectos: 1) el conocimiento de las bases químicas relacionadas a las sustancias presentes en el humo de cigarro, 2) la neurobiología del proceso de adicción a la nicotina y 3) una revisión de la literatura de los estudios de asociación genética en dicho proceso. En la presente revisión se buscan los estudios más recientes, se utilizó como herramienta de búsqueda de artículos científicos la base del
National Center for Biotechnology Information (NCBI), de los Estados Unidos, las palabras clave empleadas fueron
nicotine, smoking, dependence, genetic, tobacco, neurobiology y
GWAS. El período de publicación revisado fue de enero de 2005 a julio de 2010. En conclusión, existen numerosos estudios que ofrecen evidencia de que el componente genético contribuye en gran medida al riesgo para desarrollar adicción a la nicotina, generando así nuevos conocimientos sobre genes o regiones del genoma que posiblemente antes no habían sido descritas en el proceso adictivo y ahora son un campo nuevo de exploración científica.
REFERENCIAS (EN ESTE ARTÍCULO)
OMS. Datos sobre la epidemia de tabaquismo y el control mundial del tabaco, 2010. Fecha de acceso: 17 de junio, 2010. Disponible en: http://www.who.int/features/factfiles/tobacco_epidemic/tobacco_epidemic_facts/es/index.html
INEGI. Estadística a propósito del día mundial sin tabaco, 2010. Fecha de acceso: 17 de junio, 2010. Disponible en: http://www.inegi.org.mx/inegi/default.aspx?Pred=1&s=inegi&c=2760.
Kuri-Morales PA, González-Roldán JF, Hoy MJ, Cortés-Ramírez M. Epidemiología del tabaquismo en México. Salud Pública Méx 2006;48(Supl 1):S91-S98.
Lazcano-Ponce E. ¿Es la exposición al humo de tabaco ambiental un problema real de salud pública? Comunicado de prensa, INSP. Fecha de acceso: 17 de junio, 2010. Disponible en: http://www.insp.mx/medios/noticias/index.php?art/id:464.
National Institute on Drug Abuse. Serie de reportes de investigación. Adicción al tabaco (2010). Fecha de acceso: 17 de junio, 2010. Disponible en: http://www.drugabuse.gov/researchreports/tabaco/
Sharma G, Vijayaraghavan S. Nicotinic receptors: role in addiction and other disorders of the brain. Subst Abuse 2008(1):81.
Micó JA, Moreno BMR, Roca VAR, Rojas CMO, Ortega AA. Neurobiología de la adicción a nicotina. Prevención del Tabaquismo 2000;2:101-105.
Zieher LM, Guelman LR. Bases neurobiológicas de la adicción a la nicotina. Psicofarmacología 2005;5:30.
Matta SG, Foster CA, Sharp BM. Nicotine stimulates the expression of cFos protein in the parvocellular paraventricular nucleus and brainstem catecholaminergic regions. Endocrinology 1993;132:2149-2156.
De Granda OJI, Solano RS, Jareño EJ, Pérez TA, Barrueco FM, Jiménez RCA. De la neurobiología de la adicción a la nicotina al tratamiento del tabaquismo. Progresos terapéuticos. Prevención del Tabaquismo 2006;8:116-128.
Fernández-Espejo E. Bases neurobiológicas de la drogadicción. Rev Neurol 2002;34:659-664.
Markou A. Review. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 2008;363:3159-3168.
Thorgeirsson TE, Geller F, Sulem P, et ál. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008;452:638-642.
Saccone SF, Hinrichs AL, Saccone NL, et ál. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007;16:36-49.
Boardman JD, Blalock CL, Pampel FC. Trends in the genetic influences on smoking. J Health Soc Behav 2010;51:108-123.
Silverman EK, Palmer LJ. Case-control association studies for the genetics of complex respiratory diseases. Am J Respir Cell Mol Biol 2000;22:645-648.
Jiménez-Sánchez G, Silva-Zolezzi I, Hidalgo A, March S. Genomic medicine in Mexico: initial steps and the road ahead. Genome Res 2008;18:1191-1198.
U.S. National Library of Medicine National Institutes of Health. PubMed Access date: April-May, 2010. Available from: http://www.ncbi.nlm.nih.gov/sites/entrez/
Liu JZ, Tozzi F, Waterworth DM, et ál. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 2010;42:436-440.
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 2010;42:441-447.
Thorgeirsson TE, Gudbjartsson DF, Surakka I, et ál. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 2010; 42:448-453.
Bierut LJ, Madden PA, Breslau N, et ál. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007;16:24-35.
Caporaso N, Gu F, Chatterjee N, et ál. Genome-wide and candidate gene association study of cigarette smoking behaviors. PLoS One 2009;4:e4653.
Lou XY, Ma JZ, Sun D, Payne TJ, Li MD. Fine mapping of a linkage region on chromosome 17p13 reveals that GABARAP and DLG4 are associated with vulnerability to nicotine dependence in European-Americans. Hum Mol Genet 2007;16:142-153.
Chu SL, Xiao D, Wang C, Jing H. Association between 5-hydroxytryptamine transporter gene-linked polymorphic region and smoking behavior in Chinese males. Chin Med J (Engl) 2009;122:1365-1368.
Ishikawa H, Ohtsuki T, Ishiguro H, et ál. Association between serotonin transporter gene polymorphism and smoking among Japanese males. Cancer Epidemiol Biomarkers Prev 1999;8:831-833.
Sieminska A, Buczkowski K, Jassem E, Tkacz E. Lack of association between serotonin transporter gene polymorphism 5-HTTLPR and smoking among Polish population: a case-control study. BMC Med Genet 2008;9:76.
Tang X, Guo S, Sun H, et ál. Gene-gene interactions of CYP2A6 and MAOA polymorphisms on smoking behavior in Chinese male population. Pharmacogenet Genomics 2009;19:345-352.
Mobascher A, Rujescu D, Mittelstrass K, et ál. Association of a variant in the muscarinic acetylcholine receptor 2 gene (CHRM2) with nicotine addiction. Am J Med Genet B Neuropsychiatr Genet 2010;153B:684-690.
Shields PG, Lerman C, Audrain J, et ál. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev 1998;7:453-458.
Perkins KA, Lerman C, Grottenthaler A, et ál. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood. Behav Pharmacol 2008;19:641-649.
Sieminska A, Buczkowski K, Jassem E, Niedoszytko M, Tkacz E. Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population. BMC Med Genet 2009;10:92.
Batra V, Patkar AA, Berrettini WH, Weinstein SP, Leone FT. The genetic determinants of smoking. Chest 2003;123:1730-1739.
Weiss RB, Baker TB, Cannon DS, et ál. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 2008;4:e1000125.
Stevens VL, Bierut LJ, Talbot JT, et ál. Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev 2008;17:3517-3525.
Staley JK, Krishnan-Sarin S, Cosgrove KP, et ál. Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 2006;26:8707-8714.
Etter JF, Hoda JC, Perroud N, et ál. Association of genes coding for the alpha-4, alpha-5, beta-2 and beta-3 subunits of nicotinic receptors with cigarette smoking and nicotine dependence. Addict Behav 2009;34:772-775.
Berrettini W, Yuan X, Tozzi F, et ál. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 2008;13:368-373.
Li MD, Lou XY, Chen G, Ma JZ, Elston RC. Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol Psychiatry 2008;64:951-957.
Bierut LJ, Stitzel JA, Wang JC, et ál. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 2008;165:1163-1171.
Li MD, Mangold JE, Seneviratne C, et ál. Association and interaction analyses of GABBR1 and GABBR2 with nicotine dependence in European- and African-American populations. PLoS One 2009;4:e7055.