2011, Número 2
<< Anterior Siguiente >>
Rev Mex Cardiol 2011; 22 (2)
Ventilación mecánica en pacientes con cardiopatía aguda
Villalobos SJA, Montes OMA, Camacho MLA
Idioma: Español
Referencias bibliográficas: 47
Paginas: 96-107
Archivo PDF: 398.46 Kb.
RESUMEN
La disfunción ventricular es una de las causas que obligan a los médicos a la utilización prolongada de asistencia mecánica ventilatoria (AMV) en aquellos cardiópatas hospitalizados. Los padecimientos cardiológicos más frecuentes asociados a AMV son: edema agudo pulmonar, cardiopatía isquémica y postoperados de cirugía cardiaca. Los efectos cardiovasculares de la AMV son bien conocidos en pacientes graves, es por eso que las variables de la ventilación mecánica deben ajustarse acorde a cada padecimiento y finalmente el destete debe realizarse cuando la causa que motivó la intubación esté resuelto.
REFERENCIAS (EN ESTE ARTÍCULO)
Adams KF, Fonarow GC, Emerman CL et al: Characteristics and outcome of patients hospitalized for heart failure in the United States: Rationale, design, and preliminary observations from the first 100 000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 2005; 149: 209-216.
Cleland JG, Swedberg K, Follath F et al. The Euro Heart Failure survey programme. A survey on the quality of care among patients with heart failure in Europe. Part 1: Patient characteristics and diagnosis. Eur Heart J 2003; 24: 442-463.
Nieminen MS, Brutsaert D, Dickstein K et al. Euro Heart Failure Survey II (EHFS II): A survey on hospitalized acute heart failure patients: Description of population. Eur Heart J 2006; 27: 2725-2736.
Tavazzi L, Maggioni AP, Lucci D et al. Nationwide survey on acute heart failure in cardiology ward services in Italy. Eur Heart J 2006; 27: 1207-1215.
Pinsky MR. Heart-lung interactions. En: Ayres SM, Holbrook PR, Shoemaker WC. Textbook of critical care. 4° Ed. Philadelphia: WB Saunders, 2000: 1204-1221.
Jean-Luc Fellahi, Bruno Valtier. Does positive end-expiratory pressure ventilation improve left ventricular function? CHEST 1998; 114(2): 556-562.
Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 1999; 87: 1644-1650. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 2003; 29: 352-360.
Pinsky MR. Heart-lung interactions. In: Ayres SM, Holbrook PR, Shoemaker WC: Textbook of critical care. Fourth Ed. WB Saunders, Philadelphia; 2000: 1204-21.
Jean-Luc Fellahi, Bruno Valtier. Does positive end-expiratory pressure ventilation improve left ventricular function? CHEST 1998; 114(2): 556-562.
Buda AJ, Pinsky MR, Ingels NB et al. Effect of intrathoracic pressure on left ventricular performance. N Eng J Med 1979; 301: 453-459.
Luce JM. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA 1984; 252: 807-11. L’Her E, Duquesne F, Girou E. Noninvasive continuous positive airway pressure in elderly cardiogenic pulmonary edema patients. Intens Care Med 2004; 30: 882-888.
Bersten AD, Holt AW, Vedig AE et al. Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med 1991; 325: 1825-30.
Crane SD, Elliott MW, Gilligan P et al. Randomized controlled comparison of continuous positive airways pressure, bilevel noninvasive ventilation, and standard treatment in emergency department patients with acute cardiogenic pulmonary oedema. Emerg Med J 2004; 21: 155-61.
Hoffmann B, Welte T. The use of noninvasive pressure support ventilation for severe respiratory insufficiency due to pulmonary oedema. Intensive Care Med 1999; 25: 15-20.
Levitt MA. A prospective, randomized trial of BiPAP in severe acute congestive heart failure. J Emerg Med 2001; 21: 363-9.
Masip J, Betbese AJ, Paez J et al. Noninvasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema: a randomized trial. Lancet 2000; 356: 2126-2132.
Mehta S, Jay GD, Woolard RH et al. Randomized, prospective trial of bilevel versus continuous positive airway pressure in acute pulmonary edema. Crit Care Med 1997; 25: 620-628.
Nava S, Carbone G, DiBattista N, Bellone A, Baiardi P, Cosentini R et al. Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med 2003; 168: 1432-37.
Rusterholtz T, Kempf J, Berton C, Gayol S, Tournoud C, Zaehringer M et al. Noninvasive pressure support ventilation (NIPSV) with face mask in patients with acute pulmonary edema (ACPE). Intens Care Med 1999; 25: 21-8.
Bellone A, Vettorello M, Monari A, Cortellaro F, Coen D. Noninvasive pressure support ventilation vs continuous positive airway pressure in acute hypercapnic pulmonary edema. Intensive Care Med 2005; 31: 807-11.
Fellahi JL, Valtier B, Beauchet A, Bourdarias JP, Jardín F. Does positive end-expiratory pressure ventilation improve left ventricular function? A comparative study by transesophageal echocardiography in cardiac and noncardiac patients. Chest 1998; 114: 556-562.
Pinsky MR. The effects of mechanical ventilation on the cardiovascular system. Crit Care Clin 1990; 6: 663-678.
Räsänen J, Nikki P, Heikkila J. Acute myocardial infarction complicated by respiratory failure. The effect of mechanical ventilation. Chest 1984; 85: 21-28.
López MJB, de Llano JMA, Berrocal de la Fuente CA, Pascual PR, por el Grupo ARIAM (Análisis Retraso Infarto Agudo Miocardio). Características de los pacientes con infarto agudo de miocardio sometidos a ventilación mecánica. Datos del registro ARIAM. Rev Esp Cardiol 2001; 54: 851-859.
Marini JJ, Gattinoni L. Ventilatory management of acute respiratory distress syndrome: a consensus of two. Crit Care Med. 2004; 32: 250-5. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L,
Stewart T et al. Characteristics and outcomes in adult patients receiving mechanical ventilation. A 28-day international study. JAMA 2002; 287: 345-55.
The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-8.
Davis WB, Renard SI, Bitterman PB. Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hipoxia. N Engl J Med 1983; 309: 878-83.
Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 2003; 1974: 556-65.
Dreyfuss D, Saumnon G. Experimental changes in the alveolo-capillary barrier induced by artificial ventilation. Schweiz Med Wochenschr 1997; 127: 1203-9.
Dreyfuss D, Saumon G. Deleterious effects of mechanical ventilation on the lower lung. Rev Mal Respir 1995; 12: 551-7.
Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 1987; 135: 312-5.
John E, Ermacilla R, Golden J. Effects of intermittent positive pressure ventilation on lungs of normal rabbits. Br J Exp Pathol 1980; 61: 315-23.
Lesage A, Ramakers M, Daubin C, Verrier V, Beynier D, Charbonneau P, Cheyron D. Complicated acute myocardial infarction requiring mechanical ventilation in the intensive care unit: Prognostic factors of clinical outcome in a series of 157 patients. Crit Care Med 2004; 32 (1).
Dreyfuss D, Soler P, Basset G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am J Respir Crit Care Med 1988: 1159-64.
Carlton DP, Cummings JJ, Scheerer RG, Poulain FR, Bland RD. Lung over expansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 1990; 69: 577-83.
Hernández LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 1989; 66: 2364-8.
Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 160: 109-116.
Held H, Boettcher S, Hamann L et al. Ventilation induced chemokine and cytokine release is associated with activation of NFkB and is blocked by steroids. Am J Respir Crit Care Med 2001; 163: 711-716.
Nahum A, Hayt J, Schmitz L, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 1997; 25: 1733-1743.
Imai Y, Parodo J, Kajikawa O, De Perrot M, Fischer S, Edwards V et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 2003; 289: 2104-2112.
Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anaesthesia with controlled ventilation. N Engl J Med 1963; 269: 991-996.
Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992; 18: 81.
Lapinsky SE, Mehta S. Bench-to-bedside review: recruitment and recruiting maneuvers. Crit Care 2005; 9: 60-65.
Gattinoni L, Caironi P, Cressoni M et al. Lung recruitment in patients with acute respiratory distress syndrome. N Engl J Med 2006; 354: 1775-1786.
Scheinhorn DJ, Char DC, Hassenpflug MS et al. Post-ICU weaning from mechanical ventilation: The role of long-term facilities. Chest 2001; 120(Suppl 6): 482S-484S.
Gimenez AM, Serrano P, Marin B. Clinical validation of dysfunctional ventilatory weaning response: The Spanish experience. Int J Nurs Terminol Classif 2003;14: 53-64.