2011, Número 2
<< Anterior Siguiente >>
Rev Mex Anest 2011; 34 (2)
La diabetes mellitus y la cardioprotección
Luna P, Pastelín G, Martínez M
Idioma: Español
Referencias bibliográficas: 100
Paginas: 111-125
Archivo PDF: 787.28 Kb.
RESUMEN
La diabetes mellitus (DM) es una enfermedad metabólica que constituye un poderoso factor de riesgo para las enfermedades cardiovasculares (ECV). El 80% aproximadamente de estos pacientes mueren de ECV y cerca del 75% corresponden a muertes por enfermedad arterial coronaria (EAC). En la DM existen diversas alteraciones que hacen más susceptible al corazón al daño por isquemia-reperfusión (I/R). Por otra parte, la cardioprotección constituye todas las intervenciones o estrategias que evitan o disminuyen el daño por I/R. Una de estas estrategias es el precondicionamiento por isquemia (PCI) el cual consiste en breves períodos de isquemia seguidos de un período isquémico prolongado, el cual también se puede inducir por fármacos. La cardioprotección inducida por el PCI es inhibida en condiciones de DM. En esta revisión se describen las alteraciones del metabolismo de los principales sustratos energéticos (ácidos grasos y glucosa) que se presentan en condiciones de DM. Además se estudia la influencia que ejerce el fenómeno de la memoria metabólica en el curso de la DM y constituye en la actualidad uno de los principales factores que favorecen la susceptibilidad del paciente diabético para desarrollar ECV, ya que induce complicaciones micro y macrovasculares; se describen también los mecanismos propuestos para la instalación de la memoria metabólica y cómo este fenómeno inhibe el PCI en animales de experimentación. Finalmente se presentan las estrategias para proteger al corazón diabético de los efectos deletéreos de la memoria metabólica. Se resalta la importancia de un diagnóstico temprano de la enfermedad y del control de la glucemia.
REFERENCIAS (EN ESTE ARTÍCULO)
Tziakas DN, Chalikias GK, Kaski JC. Epidemiology of diabetic heart. Coronary Artery Disease 2005;16:S3-S10.
Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JD, Haffner SM, et al. Report of the National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Diabetes Mellitus. Circulation 2005;111:3489-93.
Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Type 2 diabetes as a “coronary heart disease equivalent”: an 18-year prospective population-based study in Finnish subjects. Diabetes Care 2005;28:2901-2907.
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229-234.
Kannel WB, McGee DL. Diabetes and cardiovascular diseases: the Framingham study. JAMA 1979;214:2035-8.
Granger CB, Califf RM, Young S, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents: the Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) study group. J Am Coll Cardiol 1993;21:920-5.
Stone PH, Muller JE, Hartwell T, York BJ, Rutherford JD, Parker CB, et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS study group. J Am Coll Cardiol 1989;14:49-57.
Lago RM, Nesto RW. Type 2 diabetes and coronary heart disease: focus on myocardial infarction. Curr Diab Rep 2009;9:73-78.
Kannel WB, McGee DL. Diabetes and glucose intolerance as risk factors for cardiovascular disease: the Framingham Study. Diabetes Care 1979;2:120-126.
Stein B, Weintraub WS, Gebhart SP, et al. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 1995;91:979-89.
Stone PH, Muller JE, Hartwell T. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to adverse prognosis. The MILIS Study Group. J Am Coll Cardiol 1989;14:49-57.
Kluber W, Haass M. Cardioprotection: definition, classification, and fundamental principles. Heart 1996;75:330-333.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53.
Kennell WB. Role of diabetes in cardiac disease: conclusion from population studies. In: Zonaraich S, editor. Diabetes and the Heart. Springfield, Illinois: Thomas Publishers, 1979:97-112.
Grundy SM, Howard B, Smith S Jr, et al. Prevention conference VI: Diabetes and cardiovascular disease. Executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2002;105:2231-2239.
Schnell O, Doering W, et al. Intensification of therapeutic approaches reduces mortality in diabetic patients with acute myocardial infarction. Diabetes Care 2004;27:455-460.
McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etipology of type 2 diabetes. Diabetes 2002;51:7-18.
Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann NY Acad Sci 2004;1015:202-213.
Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 1972;15:289-329.
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785.789.
Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 1954;16:504-515.
Van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992;72:881-940.
Hauton D, Bennett MJ, Evans RD. Utilization of triacylglycerol and non-esterified fatty acid by the working rat heart: myocardial lipid substrate preference. Biochim Biophys Acta 2001;1533:99-109.
Niu YG, Hauton D, Evans RD. Utilization of triacylglycerol-rich lipoproteins by the working rat heart: routes of uptake and metabolic fates. J Physiol 2004;558:225-237.
Aaugustus AS, Kako Y, Yagyu H, Goldberg IJ. Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab 2003;284:E331-339.
Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y, et al. Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FA/CD36. Diabetes 2002;51:3113-3119.
Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, et al. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 2003;52:1627-1634.
Shepherd D, Yates DW, Garland PB. The rate-limiting step in the oxidation of palmitate or palmitoyl-coenzime A by rat-liver mitochondia. Biochem J 1966;98:3c-4c.
Stanley WC, Meadow SR, Kivilo KM, Roth BA, Lopaschuk GD. Beta-hydroxibutirate inhibits myocardial fatty acids oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol –heart circ physiol 2003;285:H1626-H1631.
Hasselbaink DM, Glatz JF, Luiken JJ, Roemen TH, Van der Vusse GJ. Ketone bodies disturb fatty acid handling in isolated cardiomyocytes derived from control and diabetic rat. Biochem J 2003;371:753-60.
Pelletier A, Coderre L. Ketone bodies alter dinitrophenol induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Am J Physiol Endrocrinol Metab 2007;292:E1325-1332.
Garland PB, Randle PJ, Newsholme EA. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes, and starvation. Nature 1963;200:169–70.
Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 1998;329:191–6.
Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J 1976;154:327-48.
Opie LH. Heart physiology: from cell to circulation. 4th ed. Lippincott, Williams and Wilkins; 2004.
Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 1988;37:1020–4.
Niu YG, Evans RD. Myocardial metabolism of triacylglycerol-rich lipoproteins in type 2 diabetes. J Physiol 2009;587:3301–15.
Avogaro A, Crepaldi C, Miola M, Maran A, Pengo V, Tiengo A, et al. High blood ketone body concentration in type 2 non-insulin dependent diabetic patients. J Endocrinol Invest 1996;19:99–105.
Avogaro A, Nosadini R, Doria A, Fioretto P, Velussi M, Vigorito C, et al. Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol 1990;258:E606–18.
Weinstein AR, Sesso HD, Lee IM, Cook NR, Manson JE, Buring JE, et al. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA 2004;292:1188–94.
Wilding JP. The importance of free fatty acids in the development of type 2 diabetes. Diabet Med 2007;24:934–45.
Venables MC, Jeukendrup AE. Physical inactivity and obesity: links with insulin resistance and type 2 diabetes mellitus. Diabetes Metab Res Rev 2009;25:S18–23.
Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995;1:1155–61.
Al-Daghri N, Bartlett WA, Jones AF, Kumar S. Role of leptin in glucose metabolism in type 2 diabetes. Diabetes Obes Metab 2002;4:147–55.
Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 2005;146:5341–9.
Hafstad AD, Solevag GH, Severson DL, Larsen TS, Aasum E. Perfused hearts from type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am Physiol Heart Circ Physiol 2006;290:H1763–9.
Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004;109:2191–6.
Luiken JJ, Arumugam Y, Bell RC, Calles-Escandon J, Tandon NN, Glatz JF, et al. Changes in fatty acid transport and transporters are related to the severity of insulin deficiency. Am J Physiol Endocrinol Metab 2002;283:E612–21.
Carley AN, Atkinson LL, Bonen A, Harper ME, Kunnathu S, Lopaschuk GD, et al. Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch Physiol Biochem 2007;113:65–75.
Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 1995;9:651–8.
Jagasia D, Whiting JM, Concato J, Pfau S, McNulty PH. Effect of non-insulindependent diabetes mellitus on myocardial insulin responsiveness in patients with ischemic heart disease. Circulation 2001;103:1734–9.
Hall JL, Stanley WC, Lopaschuk GD, Wisneski JA, Pizzurro RD, Hamilton CD, et al. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol 1996;271:H2320–9.
Desrois M, Sidell RJ, Gauguier D, King LM, Radda GK, Clarke K. Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res 2004;61:288–96.
Menard SL, Croteau E, Sarrhini O, Gelinas R, Brassard P, Ouellet R, et al. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 2010;298:E1049–57.
Deng JY, Huang JP, Lu LS, Hung LM. Impairment of cardiac insulin signaling and myocardial contractile performance in high-cholesterol/fructose-fed rats. Am J Physiol Heart Circ Physiol 2007;293:H978–87.
Tabbi-Anneni I, Buchanan J, Cooksey RC, Abel ED. Captopril normalizes insulin signaling and insulin-regulated substrate metabolism in obese (ob/ob) mouse hearts. Endocrinology 2008;149:4043–50.
The Diabetes Control and Complications Trial Research group: The effect of the intensive treatment of diabetes on the development and progressions of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 1993;329:977-986.
The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive Diabetes Treatment and Cardiovascular Disease in patients with type-1 Diabetes. N Engl J Med 2005;353:2643-2653.
Tappia PS, Dent MR, Dhalla NS. Oxidative stress and redox regulation of phopholipase D in myocardial disease. Free Radic Biol Med 2006;41:349-361.
Opara EC, Abdel-Rahman E, Soliman S, et al. Depletion of total antioxidant capacity in type 2 diabetes. Metabolism 1999;48:1414-7.
Haidara MA, Yassin HZ, Rateb M, Ammar H, Zorkani MA. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr Vasc Pharmacol 2006;4:215-27.
Semenkovich CF, Heinecke JW. The mystery of diabetes and atherosclerosis. Diabetes 1997;46:327-344.
Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short– and long –term simvastatin treatment. Circulation 2002;106:1211-8.
Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol 2005;289:F420-F30.
Vernardos KM, Kaye DM. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems and selenium: a review. Current Medicinal Chemistry 2007;14:1539-1549.
Murry CE, Jennings RB, Reimer K. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36.
Ottani F. Galvani M. Ferrini DL. Prodromal angina limits infarct size: a role for ischemic preconditioning. Circulation 1995;91:291-7.
Kloner RA, Shook T, Antman EM, et al. Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B. Circulation 1998;97:1042-5.
Przyklenk K, Kloner RA. Ischemic preconditioning: Exploring the paradox. Progr Cardiov Dis 1998; 40:517-47.
Hausenby DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 2004;61:448-460.
Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3 beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004;113:1535-1549.
Martínez M, Carbó R, Luna P. Anestésicos y protección miocárdica. En el libro: Anestesia en el cardiópata. Editorial Alfil. 2da. Edición 2009:115-130.
Tosaki A, Engelman DT, Engelman RM, Das DK. The evolution of diabetic response to ischemia/reperfusion and preconditioning in insolated working rat hearts. Cardiovasc Res 1996;31:526-36.
Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Physiol 2000;278:H218-H224.
Nieszner E, Posa I, Kocsis E, Pogátsa G. Préda I, Koltai MZ. Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 2002;110:212-218.
Hearse DJ, Steward DA, Chain EB. Diabetes and the survival and recovery of the anoxic myocardium. J Mol Cell Cardiol 1975;7:397-415.
Tosaki A, Pali T, Droy-Lefaix M-T. Effects of ginkgo biloba extract and preconditioning on diabetic rat myocardium. Diabetologia 1996;39:1255-62.
Ebel D, Mullenheim J, Frassdorf J, Heinen A, Huhn R, Bohlen T, Ferrari J, Sudkamp H, Preckel B, Schlack W, Thamer V. Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo. Pflugers Arch 2003;446:175-182.
Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T, Nakamura S, Sato H. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol 2001;38:1007–1011.
Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Umemura T, Nakamura S, Yoshida M. Effect of acute hyperglycemia on the ischemic preconditioning effect of prodromal angina pectoris in patients with a first anterior wall acute myocardial infarction. Am J Cardiol 2003;92:288–291.
Tanaka K, Kehl F, Gu W, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR, Isoflurane-induced preconditioning is attenuated by diabetes. Am J Physiol Heart Circ Physiol 2002;282:H2018–H2023.
Kehl F, Krolikowski JG, Mraovic B, Pagel PS, Warltier DC, Kersten JR. Hyperglycemia prevents isoflurane-induced preconditioning against myocardial infarction. Anesthesiology 2002;96:183–188.
Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DRJr. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999;33:119-124.
Muller G, Hartz D, Punter J, Okonomopulos R, Kramer W. Differential interaction of glimepiride and glibenclamide with the b-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1994;1191:267-277.
Geisen K, Vegh A, Krause E, Papp JG. Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm Metab 1996;28:496-507.
Legtenberg RJ, Houston RJF, Oeseburg B, Smits P. Effects of sulfonylurea derivatives on ischemia-induced loss of function in the insolated rat heart. Eur J Pharmacol 2001;419:85-92.
Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 2002;105:334-340.
Mazumder PK, Oneill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse heart. Diabetes 2004;53:2366-74.
Giugliano D, Marfella R, Copolla L, Verrazzo G, Acampora R, Giunta R, et al. Vascular effects of acute hyperglycemia in humans are reversed by L-arginine, evidence for reduced availability of nitric oxide during hyperglycemia. Circulation 1997;95:1783-90.
Gross ER, LaDisa Jf Jr, Weinhrauch D, Olson LE, Kress TT, EthrickDA, Pagel PS, Waltier DC, Kersten JR. Reactive oxygen species modulate coronary wall shear stress and endothelial function during hyperglycemia. Am J Physiol Heart Circ Physiol 2003;284:H1552-H1559.
Laviola L, Belsanti G, Davalli AM, Napoli R, Perrini S, Weir GC, Giorgino R, Giorgino F. Effects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart. Diabetes 2001;50:2709-2720.
Gross Er, Hsu AK, Gross JG. Opioid induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat heart. Circ Res 2004;94:960-966.
Sigal R, Glen K, Boulq N, Wells, G, Prud’homme D, Fortier M, Reid R, Tulloch H, Coyle D, Philips P, Jennings & Jaffey J. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Annals of Internal Medicine 2007;147:357-369.
Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008;57:696–705.
Cooper SA, Whaley-ConnellA, Habibi J, et al. Renin-angiotensin-aldosterone and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 2007;293:H2009-23.
Hayashi T, Sohmiya K, Ukimura A, et al. Angiotensin II receptor blockade prevents microangiopathy and preserves diastolic function in the diabetic rat heart. Heart 2003;89:1236-42.
Fogari R, Mugellini A, Destro M, et al. Losartan and preventions of atrial fibrillation recurrence in hypertensive patients. J Cardiovasc Pharmacol 2006;47:46-50.
Healey JS, Baranchuk A, Crystal E, et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 2005;45:1832-9.
Liao JK. Statins: potent vascular anti-inflammatory agents. Int J Clin Pract Suppl 2004;143:41-58.
Davignon J. Cardioprotective and other emerging effects of statins. Int J Clin Pract Suppl 2004;143:49-57.