2010, Número 3
<< Anterior Siguiente >>
Rev Biomed 2010; 21 (3)
Los genotipos americano y americano/asiático del virus dengue difieren en la eficiencia de infección del mosquito: determinantes moleculares candidatos para infección productiva del vector
Salazar MI, Loroño-Pino MA, Farfán-Ale JA, Olson KE, Beaty BJ
Idioma: Ingles.
Referencias bibliográficas: 49
Paginas: 121-135
Archivo PDF: 2967.05 Kb.
RESUMEN
Introducción. La sustitución de genotipos parece jugar un papel crítico en el incremento dramático de las epidemias y la severidad del dengue en Latinoamérica; sin embargo, la información acerca de los determinantes de competencia entre estos genotipos es escasa. La infección productiva en
Aedes aegypti puede ser uno de los elementos que condicionen dichas sustituciones. Los virus que infectan de forma más eficiente y se diseminan en los mosquitos tienen mejor probabilidad de ser transmitidos al siguiente hospedero susceptible y pueden, así, tener un potencial epidémico mayor.
Objetivos. Los objetivos de este trabajo fueron establecer las diferencias en el potencial para infectar al vector de varios aislados virales de la Península de Yucatán, México, así como identificar candidatos moleculares que determinan dichas diferencias fenotípicas.
Materiales y Métodos. Diferentes aislados virales de la Península de Yucatán, México, se caracterizaron
in vivo en mosquitos. La infección de los intestinos medios y la diseminación a las glándulas salivales de los mosquitos se determinó por inmunofluorescencia indirecta y los títulos virales por ensayos en placa. El gen de la proteína E (envoltura) y el 3´UTR (región no traducida 3´) se secuenciaron para identificar sustituciones en las secuencias de nucleótidos o aminoácidos que correlacionan con la infección del vector.
Resultados. Ambos genotipos examinados fueron equivalentes en la capacidad para infectar intestinos medios. Sin embargo, ellos difirieron significativamente en su capacidad para diseminarse a las glándulas salivales. Los virus correspondientes al genotipo Americano/Asiático se diseminaron de forma eficientemente en mosquitos
Aedes aegypti colectados en México. El análisis de las secuencias del gen de la proteína E y del 3´UTR reveló determinantes moleculares que pueden estar relacionados con los fenotipos observados en la infección del vector.
Conclusiones. El genotipo del VDEN-2 condiciona la capacidad vectorial e impacta las tasas de diseminación hacia tejidos clave como las glándulas salivales en el mosquito. Algunos de los cambios en aminoácidos de la proteína E y nucleótidos en el 3´UTR pudieran estar relacionados con este fenotipo.
REFERENCIAS (EN ESTE ARTÍCULO)
Derouich M, Boutayeb A, Twizell EH. A model of dengue fever. Biomed Eng Online 2003;2: 4.
Division of Disease Prevention and Control CDP, HCP/HCT, Pan American Health Organization. Re-emergence of dengue in the Americas. Epidemiolog. Bull 1997;18: 1-6.
Romano CM, de Matos AM, Araújo ES, Villas-Boas LS, da Silva WC, Oliveira OM, Carvalho KI, de Souza AC, Rodrigues CL, Levi JE, Kallas EG, Pannuti CS. Characterization of dengue virus type 2: new insights on the 2010 Brazilian epidemic. PLoS One 2010;5(7):e11811.
Gomez-Dantes H, Willoquet JR. Dengue in the Americas: challenges for prevention and control. Cadernos de Saude Publica 2009;25: S19-S31.
Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de C, Ramos C, Rico-Hesse R. Dengue virus structural differences that correlate with pathogenesis. J Virol 1999;73: 4738-47.
Rico-Hesse R. Microevolution and virulence of dengue viruses. Adv Virus Res 2003;59: 315-41.
Lorono-Pino MA, Farfan-Ale JA, Zapata-Peraza AL, Rosado-Paredes EP, Flores-Flores LF, Garcia-Rejon JE, Diaz FJ, Blitvich BJ, Andrade-Narvaez M, Jimenez-Rios E, Blair CD, Olson KE, Black WC, Beaty BJ. Introduction of the American/Asian genotype of dengue 2 virus into the Yucatan State of Mexico. Am J Trop Med Hyg 2004;71: 485-92.
Kochel TJ, Watts DM, Halstead SB, Hayes CG, Espinoza A, Felices V, Caceda R, Bautista CT, Montoya Y, Douglas S, Russell KL. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet 2002;360:310-2.
Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 1997;230: 244-51.
Twiddy SS, Farrar JJ, Vinh Chau N, Wills B, Gould EA, Gritsun T, Lloyd G, Holmes EC. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 2002;298: 63-72.
Díaz FJ, Black WC 4th, Farfán-Ale JA, Loroño-Pino MA, Olson KE, Beaty BJ. Dengue virus circulation and evolution in Mexico: a phylogenetic perspective. Arch Med Res 2006;37:760-73.
Carrillo-Valenzo E, Danis-Lozano R, Velasco-Hernández JX, Sánchez-Burgos G, Alpuche C, López I, Rosales C, Baronti C, de Lamballerie X, Holmes EC, Ramos-Castañeda J. Evolution of dengue virus in Mexico is characterized by frequent lineage replacement. Arch Virol 2010;155:1401-12.
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, RaengVol.sakulrach B, Rothman AL, Ennis FA, Nisalak A. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 2000; 181: 2-9.
Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 2002; 186: 1165-8.
Anderson JR, Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg 2006; 75: 886-92.
Armstrong PM, Rico-Hesse R. Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 2001; 1: 159-68.
Armstrong PM, Rico-Hesse R. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 2003; 68: 539-44.
Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA, Estes DM, Weaver SC. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology 2007; 358: 402-12.
Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 1990; 174:479-93.
Lanciotti RS, Lewis JG, Gubler DJ, Trent DW. Molecular evolution and epidemiology of dengue-3 viruses. J Gen Virol 1994; 75:65-75.
Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan JA, Higgs S, Black WC 4th, Beaty BJ. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and United States. Am J Trop Med Hyg 2002;67: 84-92.
Salazar MI, Richardson J, Sánchez-Vargas IJ, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropism in orally infected Aedes aegypti mosquitoes. BMC Microbiol 2007; 7: 9.
Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2005; 2: 49.
Guirakhoo F, Hunt AR, Lewis JG, Roehrig JT. Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 1993; 194:219-23.
Pierro DJ, Salazar MI, Beaty BJ, Olson KE. Infectious clone construction of dengue virus type 2, strain Jamaica 1409 and characterization of a conditional mutant in the envelope protein. J Gen Virol 2006; 87: 2263-68.
Lee E, Weir RC, Dalgarno L. Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology 1997; 232:281-90.
Lok SM, Ng ML, Aaskov J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody. J Med Virol 2001; 65:315-23.
Pryor MJ, Carr JM, Hocking H, Davidson AD, Li P, Wright PJ. Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 2001; 65:427-34.
Romero TA, Tumban E, Jun J, Lott WB, Hanley KA. Secondary structure of dengue virus type 4 3’ untranslated region: impact of deletion and substitution mutations. J Gen Virol 2006; 87: 3291-6.
Chiu WW, Kinney RM, Dreher TW. Control of translation by the 5’- and 3’-terminal regions of the dengue virus genome. J Virol 2005; 79: 8303-15.
Lo MK, Tilgner M, Bernard KA, Shi PY. Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3’ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 2003; 77: 10004-14.
Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Scott TW. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. PLoS Negl Trop Dis 2009; 3:e468.
Schoepp RJ, Beaty BJ, Eckels KH. Infection of Aedes albopictus and Aedes aegypti mosquitoes with dengue parent and progeny candidate vaccine viruses: a possible marker of human attenuation. Am J Trop Med Hyg 1991; 45:202-10.
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 2000;181(1): 2-9.
Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, Li CM, et al. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 2003; 305:330-338.
Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, et al. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 2002; 66:213-22.
Salazar-Sánchez MI. Dissertation: Determinants of dengue type 2 virus infection in the mosquito Aedes aegypti. Publication Number: 3226153. Colorado State University 2006; 165 pp.
Modis Y, Ogata S, Clements D and Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004; 427:313-9.
De Nova-Ocampo M, Villegas-Sepulveda N, del Angel RM. Translation elongation factor-1alpha, La, and PTB interact with the 3’ untranslated region of dengue 4 virus RNA. Virology 2002; 295:337-47.
Yocupicio-Monroy RM, Medina F, Reyes-del Valle J, del Angel RM. Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3’ untranslated region RNA. J Virol 2003; 77:3067-76.
Yocupicio-Monroy M, Padmanabhan R, Medina F, del Angel RM. Mosquito La protein binds to the 3’ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 2007; 357:29-40.
Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 2006; 20:2238-49.
Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV. Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 2005; 79: 6631-43.
Holden KL, Harris E. Enhancement of dengue virus translation: role of the 3’ untranslated region and the terminal 3’ stem-loop domain. Virology 2004; 329:119-33.
Yu L, Markoff L. The topology of bulges in the long stem of the flavivirus 3’ stem-loop is a major determinant of RNA replication competence. J Virol 2005; 79: 2309-24.
Gritsun TS, Gould EA. Direct repeats in the 3’ untranslated regions of mosquito-borne flaviviruses: possible implications for virus transmission. J Gen Virol 2006; 87:3297-305.
Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV. Role of RNA structures present at the 3’UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 2005; 339:200-12.
King CC, Chao DY, Chien LJ, Chang GJ, Lin TH, Wu YC, et al. Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3. Virol J 2008; 5:63.
Klungthong C, Zhang C, Mammen MP Jr, Ubol S, Holmes EC. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology 2004; 329:168-79.