2010, Número 4
<< Anterior Siguiente >>
Neumol Cir Torax 2010; 69 (4)
Mecanismos inmunológicos de la respuesta inflamatoria en EPOC
Reséndiz-Hernández JM, Camarena Á, Pérez-Rubio G, Falfán-Valencia R
Idioma: Español
Referencias bibliográficas: 68
Paginas: 210-217
Archivo PDF: 273.69 Kb.
RESUMEN
La enfermedad pulmonar obstructiva crónica es una enfermedad crónica compleja que involucra diversos tipos de células y mediadores inflamatorios. Las relaciones entre estos tipos de células, citocinas y la secuencia de eventos que culmina con limitación progresiva del flujo de aire y destrucción del parénquima pulmonar, no es del todo clara. Se reconoce como una enfermedad sistémica con importantes manifestaciones extrapulmonares que tienen repercusiones en diferentes órganos. Diversos problemas de salud se inician por fumar tabaco, empezando por el daño directo del tejido pulmonar por gases nocivos contenidos en el humo de cigarro y, posteriormente, por la activación directa de macrófagos, neutrófilos y células residentes del tejido por partículas del humo y/o por la inducción de procesos de reparación. Existen dos hipótesis que tratan de explicar esta respuesta anormal: 1) un desequilibrio en el sistema oxidantes/antioxidantes y 2) un desequilibrio en el sistema proteasas/antiproteasas. Con respecto a los mecanismos celulares involucrados en el proceso inflamatorio local, se ha descrito el papel que juegan los linfocitos T CD8+ activados por señales de alarma producidas por células presentadoras de antígeno, que a su vez han sido activadas por exposición a patógenos, toxinas, daño mecánico y humo de cigarro.
REFERENCIAS (EN ESTE ARTÍCULO)
Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003;22:672-688.
Donaldson GC, Seemungal TA, Patel IS, et ál. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 2005;128:1995-2004.
Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 2004;59:574-580.
Garrod R, Marshall J, Barley E, Fredericks S, Hagan G. The relationship between inflammatory markers and disability in chronic obstructive pulmonary disease (COPD). Prim Care Respir J 2007;16:236-240.
Pinto-Plata VM, Müllerova H, Toso JF, et ál. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax 2006;61:23-28.
Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS; GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/ WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256-1276.
Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008;122:456-468.
Scanlon PD, Connett JE, Waller LA, Altose MD, Bailey WC, Buist AS. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med 2000;161 (2 Pt 1):381-390.
Hunninghake GW, Crystal RG. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 1983;128:833-838.
Wang H, Liu X, Umino T, et ál. Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol 2001;25:772-779.
Stockley RA. Neutrophils and the pathogenesis of COPD. Chest 2002;121(5 Suppl):151S-155S.
Hogg JC, Chu F, Utokaparch S, et ál. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645-2653.
Alberg A. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 2002;180:121-137.
de Burbure CY, Heilier JF, Nève J, et ál. Lung permeability, antioxidant status, and NO2 inhalation: a selenium supplementation study in rats. J Toxicol Environ Health A 2007;70:284-294.
Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999;274:2234-2242.
Williams AS, Issa R, Leung SY, et ál. Attenuation of ozone-induced airway inflammation and hyper-responsiveness by c-Jun NH2 terminal kinase inhibitor SP600125. J Pharmacol Exp Ther 2007;322:351-359.
Tsukagoshi H, Kawata T, Shimizu Y, Ishizuka T, Dobashi K, Mori M. 4-Hydroxy-2-nonenal enhances fibronectin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth factor receptor-linked extracellular signal-regulated kinase p44/42 pathway. Toxicol Appl Pharmacol 2002;184:127-135.
Laurell CB, Eriksson S. The electrophoretic a-1-globulin pattern of serum in a-1-antitrypsin deficiency. Scand J Clin Lab Invest 1963;15:132-140.
Gross P, Pfitzer EA, Tolker E, Babyak MA, Kaschak M. Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health 1965;11:50-58.
Barrett AJ. The many forms and functions of cellular proteinases. Fed Proc 1980;39:9-14.
Dhami R, Gilks B, Xie C, Zay K, Wright JL, Churg A. Acute cigarette smoke-induced connective tissue breakdown is mediated by neutrophils and prevented by alpha 1-antitrypsin. Am J Respir Cell Mol Biol 2000;22:244-252.
Janoff A, Carp H. Possible mechanisms of emphysema in smokers: cigarette smoke condensate suppresses protease inhibition in vitro. Am Rev Respir Dis 1977;116:65-72.
Janoff A, George-Nascimento C, Rosenberg S. A genetically engineered, mutant human alpha-1-proteinase inhibitor is more resistant than the normal inhibitor to oxidative inactivation by chemicals, enzymes, cells, and cigarette smoke. Am Rev Respir Dis 1986;133:353-356.
Hogg JC, Senior RM. Chronic obstructive pulmonary disease. Part 2: pathology and biochemistry of emphysema. Thorax 2002;57:830-834.
Ishii KJ, Suzuki K, Coban C, et ál. Genomic DNA released by dying cells induces the maturation of APCs. J Immunol 2001;167:2602-2607.
Barnes PJ, Cosio MG. Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med 2004;1:e20.
Chrysofakis G, Tzanakis N, Kyriakoy D, et ál. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest 2004;125:71-76.
Vernooy JHJ, Möller GM, van Suylen RJ, et ál. Increased granzyme A expression in type II pneumocytes of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:464-472.
Ye P, Rodríguez FH, Kanaly S, et ál. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001;194:519-527.
Happel KI, Dubin PJ, Zheng M, et ál. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005;202:761-769.
McAllister F, Henry A, Kreindler JL, et ál. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 2005;175:404-412.
Aujla SJ, Dubin PJ, Kolls JK. Interleukin-17 in pulmonary host defense. Exp Lung Res 2007;33:507-518.
O’Shaughnessy T, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 1997;155:852-857.
Saetta M, Di Stefano A, Maestrelli P, et ál. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 1993;147:301-306.
Lams BE, Sousa AR, Rees PJ, Lee TH. Subepithelial immunopathology of the large airways in smokers with and without chronic obstructive pulmonary disease. Eur Respir J 2000;15:512-516.
Jeffery PK. Comparison of the structural and inflammatory features of COPD and asthma. Giles F. Filley Lecture. Chest 2000;117:251S-260S.
Di Stefano A, Capelli A, Lusuardi M, et ál. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 1998;158:1277-1285.
Balbi B, Bason C, Balleari E, et ál. Increased bronchoalveolar granulocytes and granulocyte/macrophage colony-stimulating factor during exacerbations of chronic bronchitis. Eur Respir J 1997;10:846-850.
Zhu J, Qiu YS, Majumdar S, et ál. Exacerbation of bronchitis: bronchial eosinophilia and gene expression for IL-4, IL-5, and eosinophil chemoattractants. Am J Respir Crit Care Med 2001;164:109-116.
Panina-Bordignon P, D’Ambrosio D. Chemokines and their receptors in asthma and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2003;9:104-110.
Owen C. Chemokine receptors in airway disease: which receptors to target? Pulm Pharmacol Ther 2001;14:193-202.
Strieter RM, Lukacs NW, Standiford TJ, Kunkel SL. Cytokines. 2. Cytokines and lung inflammation: mechanisms of neutrophil recruitment to the lung. Thorax 1993;48:765-769.
Saetta M, Mariani M, Panina-Bordignon P, et ál. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;165:1404-1409.
Morrison D, Strieter RM, Donnelly SC,Burdick MD, Kunkel SL, MacNee W. Neutrophil chemokines in bronchoalveolar lavage fluid and leukocyte-conditioned medium from nonsmokers and smokers. Eur Respir J 1998;12: 1067-1072.
Kuschner WG, D’Alessandro A, Wong H, Blanc PD. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J 1996;9:1989-1994.
Woolhouse IS, Bayley DL, Stockley RA. Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha (l)-antitrypsin deficiency and the role of leukotriene B(4) and interleukin 8. Thorax 2002;57:709-714.
Takanashi S, Hasegawa Y, Kanehira Y, et ál. Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur Respir J 1999;14:309-314.
Hogg JC. Why does airway inflammation persist after the smoking stops? Thorax 2006;61:96-97.
Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996;153:530-534.
Yamamoto C, Yoneda T, Yoshikawa M, et ál. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 1997;112:505-510.
Kuss H, Hoefgen N, Johanssen S, Kronbach T, Rundfeldt C. In vivo efficacy in airway disease models of N-(3, 5-dichloropyrid-4-yl)-[l-(4-fluorobenzyl)-5- hydroxy-indole-3-yl]-glyoxylic acid amide (AWD 12–281), a selective phosphodiesterase 4 inhibitor for inhaled administration. J Pharmacol Exp Ther 2003;307:373-385.
van Eeden SF, Sin DD. Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease. Respiration 2008;75:224-238.
Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000; 343:269-280.
Vernooy JH, Küçükaycan M, Jacobs JA, et ál. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med 2002;166:1218-1224.
Noguera A, Busquets X, Sauleda J, Villaverde JM, MacNee W, Agustí AG. Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 158(5 Pt 1):1664-1668.
Torres JL, Ridker PM. Clinical use of high sensitivity C-reactive protein for the prediction of adverse cardiovascular events. Curr Opin Cardiol 2003; 18:471-478.
Schols AM, Buurman WA, Staal van den Brekel AJ, Dentener MA, Wouters EF. Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease. Thorax 1996;51:819-824.
de Torres JP, Cordoba-Lanus E, Lopez-Aguilar C, et ál. C-reactive protein levels and clinically important predictive outcomes in stable COPD patients. Eur Respir J 2006;27:902-907.
Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax 2000;55:114-120.
Song W, Zhao J, Li Z. lnterleukin-6 in bronchoalveolar lavage fluid from patients with COPD. Chin Med J (Engl) 2001;114:1140-1142.
Bucchioni E, Kharitonov SA, Allegra L, Barnes PJ. High levels of interleukin-6 in the exhaled breath condensate of patients with COPD. Respir Med 2003;97:1299-1302.
Wedzicha JA, Seemungal TA, MacCallum PK, et ál. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb Haemost 2000;84:210-215.
Debigaré R, Marquis K, Côté CH, et ál. Catabolic/anabolic balance and muscle wasting in patients with COPD. Chest 2003;124:83-89.
Tanni SE, Pelegrino NR, Angeleli AY, Correa C, Godoy I. Smoking status and tumor necrosis factor-alpha mediated systemic inflammation in COPD patients. J Inflamm (Lond) 2010;7:29.
Russell RE, Thorley A, Culpitt SV, et ál. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 2002;283:L867-L873.
Rusznak C, Mills PR, Devalia JL, Sapsford RJ, Davies RJ, Lozewicz S. Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2000;23:530-536.
Rupp J, Kothe H, Mueller A, Maass M, Dalhoff K. Imbalanced secretion of IL-1beta and IL-1RA in Chlamydia pneumoniae-infected mononuclear cells from COPD patients. Eur Respir J 2003;22:274-279.
Freeman CM, Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am J Pathol 2007;171:767-776.