2010, Número 3
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2010; 18 (3)
Impacto de las especies reactivas del oxígeno sobre la fertilidad masculina
Hernández-Matos Y, Delgado-Roche L, López-Pérez R, Martínez-Sánchez G, Mallok A
Idioma: Español
Referencias bibliográficas: 30
Paginas: 153-158
Archivo PDF: 278.38 Kb.
RESUMEN
Durante la pasada década, las especies reactivas del oxígeno han emergido como importantes reguladores de una multitud de procesos fisiológicos y fisiopatológicos; tal es el caso del papel que ejercen sobre la fertilidad masculina. En concentraciones moderadas y controladas, las especies reactivas del oxígeno son indispensables para que se lleve a cabo el proceso de capacitación del espermatozoide. Pero al aumentar su generación y disminuir su eliminación, por parte de los antioxidantes, impactan negativamente sobre los gametos masculinos y causan daños al ADN e inducen procesos de peroxidación lipídica en la membrana celular, con lo cual comprometen la viabilidad de los mismos. En el presente trabajo se realizó una revisión bibliográfica actualizada acerca del papel del estrés oxidativo y las especies reactivas de oxígeno sobre la fertilidad masculina.
REFERENCIAS (EN ESTE ARTÍCULO)
O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 2006; 41: 528-540. Disponible en: http:// preview.ncbi.nlm.nih.gov/pubmed/16863985
Llamos H. Endocrinología en ginecología. Ciudad de la Habana; Ed. Ciencias Médicas 2006: 116-133.
De Lamirande E, Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med 2009; 46: 502-510.
De Jonge C. Biological basis for human capacitation. Hum Reprod 2005; 11: 205-214.
Tremellen K. Oxidative stress and male infertility-a clinical perspective. Hum Reprod Upd 2008; 14: 243-258. Disponible en: http://preview.ncbi.nlm.nih.gov/pubmed/18281241
Guyton AC, Hall JE. Medical physiology. Philadelphia; Elsevier, 2006: 999-1001.
Kierszenbaum AL. Apoptosis during spermatogenesis: the thrill of being alive. Mol Reprod Dev 2001; 58: 1.
Aitken RJ, Baker HW. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod 1995; 10: 1736-1739.
León OS, Martínez G, Candelario EJ, García I, Bilbao T, Ledesma L. Balance antioxidante- prooxidante: salud y enfermedad. Ciudad de la Habana 2005: 84.
Martín CA. Generación de mediadores lipídicos inducida por Pert- butilhidroperóxido en hepatocitos de rata. Tesis de Doctorado 2001: 1-4.
Virág L, Szabó E, Gergely P, Szabó C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 2003; 140: 113-124.
Alba LE, Monzón G, Peláez LA, Quintero Y. Papel del estrés oxidativo en la infertilidad masculina. Rev Cubana Invest Biomed 2000; 19: 202-205. Disponible en: http:// scielo.sld.cu/scielo.php?script=sci_issuetoc&pid=0864- 030020000003&lng=es&nrm=iso
Sevanian A, Ursini F. Lipid peroxidation in membranes and low-density lipoproteins: similarities and differences. Free Radic Biol Med 2000; 29: 306-311.
Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994; 62: 387-393.
Ford C. Regulation of sperm functions by reactive oxygen species. Hum Reprod Upd 2004; 10: 387-399.
O’Flaherty C, Beorelgui B, Beconi MT. Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. Int J Androl 2003; 26: 109-114.
O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species modulate independent protein phosphorilation pathways during human sperm capacitation. Free Radic Biol Med 2006; 40: 1045-1055.
Herrero M, Chatterjee S, Lefiévre L, de Lamirande E, Gagnon C. Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Free Radic Biol Med 2000; 29: 522-536.
Fulbert JC, Cals MJ. Free radicals in clinical biology. Origin, pathogenic effect and defense mechanisms. Pathol Biol 1992; 40: 66-77.
Zaniboni L, Cerolini S. Liquid storage of turkey semen:Changes in quality parameters, lipid composition and suceptibility to induced in vitro peroxidation in control, n3-fatty acid and alpha-tocopherol rich spermatozoa. An Reprod Sci 2009; 112: 51-65.
Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med 2002; 347: 576-580.
O’Brien J, Zini A. Sperm DNA integrity and male infertility. Urology 2005; 65: 16-22.
Villegas J, Schulz M, Soto L, Iglesias T, Miska W, Sánchez R. Influence of reactive oxygen species produced by activated leukocytes at the level of apoptosis in mature human spermatozoa. Fertil Steril 2005; 83: 808-810.
Ford WCL. Reactive oxygen species and sperm. Hum Fert 2001; 4: 77-78.
Oliva R. Protamines and male infertility. Hum Reprod Upd 2006; 12: 417-435.
Álvarez JG, Storey BT: Role of glutathione peroxidase in protecting mammalian spermatozoa from the loss of motility caused by spontaneous lipid peroxidation. Gam Res 1989; 23: 77-90.
Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene famili: a comparison of the Cu-Zn-SOD (SOD1), Mn-SOD (SOD2) and Se-SOD (SOD3) gene structure evolution and expression. Free Radic Biol Med 2002; 33: 337-349.
Martínez G, Popov I, Pérez G, Al Dalaen SM, Horwat R, Giuliani A, León OS. Contribution to characterization of oxidative stress in diabetic patients with macroangiopathic complication. Acta Farm Bonaerense 2005; 24: 197-203.
Chen H, Tappel AL. Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetyl cisteine, coenzyme Q0, coenzyme Q10, -carotene, canthanxanthine, and (+) cathechine against oxidative damage to rat blood and tissues in vivo. Free Radic Biol Med 1995; 18: 949-953.
Fontham ETH. Vitamin C, vitamin C foods and cancer: Epidemiology studies. In: Frei B, ed. Natural antioxidants in human health and disease. London; London Academic Press, 1994: 157-197