2010, Número 2
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2010; 31 (2)
Segmentación y detección de glóbulos blancos en imágenes usando Sistemas Inmunes Artificiales
Cuevas E, Osuna-Enciso V, Oliva D, Wario F, Zaldivar D
Idioma: Español
Referencias bibliográficas: 55
Paginas: 119-134
Archivo PDF: 789.54 Kb.
RESUMEN
Los glóbulos blancos (GB) o leucocitos juegan un papel importante en el diagnóstico de distintas enfermedades. Aunque técnicas de procesamiento digital de imágenes han ayudado parcialmente al análisis de tales células, prevalecen distintas complicaciones en la detección de GB, debido a variaciones en forma, tamaño, así como iluminaciones no adecuadas inherentes a la preparación del frotis sanguíneo. Por otra parte, los sistemas inmunes artificiales (SIA), basados en la manera en que el sistema inmunológico natural optimiza sus funciones para la detección de antígenos, han sido aplicados con éxito en la solución de distintos problemas de optimización, produciendo resultados superiores comparados con las técnicas clásicas. El enfoque más usado de SIA es el algoritmo de selección clonal (ASC), el cual permite proliferar a aquellas soluciones (anticuerpos) que mejor resuelven a una determinada función de desempeño (antígeno). Este artículo presenta un algoritmo para la segmentación, detección y medición de leucocitos en imágenes de frotis sanguíneo. El algoritmo usa dos sistemas ASC, uno para segmentación y el otro para detección de leucocitos. El problema de detección es considerado en este trabajo como un problema de optimización entre el leucocito y la forma circular que mejor lo aproxime. El algoritmo utiliza la codificación de tres puntos de la imagen de bordes para modelar los leucocitos candidatos. Una función de costo evalúa si tales leucocitos candidatosestán realmente en la imagen. Siguiendo los valores de tal función de costo, el grupo de leucocitos candidatos es modificado usando ASChasta aproximarse a los leucocitos reales presentes en la imagen de bordes. Los resultados obtenidos en comparación a otros algoritmos usados para la misma tarea validan la eficiencia de esta propuesta en exactitud, velocidad y robustez.
REFERENCIAS (EN ESTE ARTÍCULO)
Mitchell S, Elkind M, Jianfeng C, Tanja R, Bernadette B, RalphL. Leukocyte count predicts outcome after ischemic stroke: The Northern Manhattan Stroke Study. Journal of Stroke and Cerebrovascular Diseases 2004; 13(5): 220-227.
Pappua V, Bagchi P. 3D computational modeling and simulation of leukocyte rolling adhesion and deformation. Computers in Biology and Medicine 2008; 38(6): 738-753.
Ritter N, Cooper J. Segmentation and border identification of cells in images of peripheral blood smear slides. In Proceedings of the Thirtieth Australasian Conference on Computer Science 2007; 62: 161–169.
Ongun G, Halici U, Leblebicioglu K, Atalay V, Beksac M, Beksac S. Feature extraction and classification of blood cells for an automated differential blood count system. Neural Networks. Proceedings. IJCNN 2001; 4: 2461–2466.
Jiang K, Liao QM, Dai SY. A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. Machine Learning and Cybernetics, International Conference on, 5, 2003: 2820–2825.
Dorini LB, Minetto R, Leite NJ. White blood cell segmentation using morphological operators and scale-space analysis. In SIBGRAPI ‘07: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing.
Scotti F. Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. In 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, CIMSA, 2005: 96–101.
Kumar B, Joseph D, Sreenivasc T. Teager energy based blood cell segmentation. Digital Signal Processing. DSP 14th International Conference on, 2, 2002: 619–622.
Cseke I. A fast segmentation scheme for white blood cell images. In Pattern Recognition. Conference Image, Speech and Signal Analysis, Proceedings. 11th IAPR International Conference 2002; 3: 530–533.
Otsu N. A threshold selection method from gray-level histograms. Automatica 1975; 11: 285–296.
Wang S, Korris FL, Fu D. Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection, Neurocomputing 2007; 70: 1348-1359.
Muammar H, Nixon M. Approaches to extending the Hough transform. Proc. Int. Conf. on Acoustics, Speech and Signal Processing ICASSP-89, 1989; 3: 1556-1559.
Atherton TJ, Kerbyson DJ. Using phase to represent radius in the coherent circle Hough transform, proc. IEE Colloquium on the Hough Transform, IEE, London (1993).
Fischer M, Bolles R. Random sample consensus: A paradigm to model fitting with applications to image analysis and automated cartography. CACM 1981; 24(6): 381-395.
Shaked D, Yaron O, Kiryati N. Deriving stopping rules for the probabilistic hough transform by sequential analysis, comput. Vision Image Understanding, 1996; 63: 512-526.
Xu L, Oja E, Kultanen P. A new curve detection method: Randomized hough transform (RHT), pattern Recognition Lett. 1990; 11(5): 331-338.
Han JH, Koczy LT, Poston T. Fuzzy Hough transform. Proc. 2nd Int. Conf. on Fuzzy Systems, 1993; 2: 803-808.
Lu W, Tan JL. Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT). Pattern Recognition 2008; 41(4): 1268–1279.
Roth G, Levine MD. Geometric primitive extraction using a genetic algorithm. IEEE Trans. Pattern Anal. Machine Intell. 1994; 16(9): 901-905.
Lutton E, Martinez P. A genetic algorithm for the detection 2-D geometric primitives on images. Proc. of the 12th Int.Conf. on Pattern Recognition, 1994; 1: 526-528.
Yao J, Kharma N, Grogono P. Fast robust GA-based ellipse detection, Proc. 17th Int. Conf. on Pattern Recognition ICPR- 04, 2, Cambridge, UK, 2004: 859-862.
Ayala-Ramírez V, García-Capulin CH, Pérez-García A, Sánchez- Yáñez ER. Circle detection on images using genetic algorithms. Pattern Recognition Letters 2006; 27(6): 652–657.
Dasgupta S, Das S, Biswas A, Abraham A. Automatic circle detection on digital images whit an adaptive bacterial foraging algorithm. Soft Computing, 2009; DOI 10.1007/ s00500-009-0508-z.
Rosin PL, Nyongesa HO. Combining evolutionary, connectionist, and fuzzy classification algorithms for shape analysis. Cagnoni, S. et al. (Eds.), Proc. EvoIASP, Real-World Applications of Evolutionary Computing, 2000: 87-96.
Rosin PL. Further five point fit ellipse fitting, proc. 8th British Machine Vision Conf., Cochester, UK, 1997: 290-299.
Goldsby GA, Kindt TJ, Kuby J, Osborne B.A. Immunology, fifth ed., Freeman, New York, NY, 2003.
de Castro LN, Timmis J. Artificial Immune Systems: A New Computational Intelligence Approach, springer, London, UK, 2002.
Dasgupta D. Advances in artificial immune systems, IEEE Computational Intelligence Magazine 2006; 1(4): 40–49.
Wang X, Gao XZ, Ovaska SJ. Artificial immune optimization methods and applications - a survey, proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, The Hague, The Netherlands, October 2004: 3415-3420.
de Castro LN, von Zuben FJ. Learning and optimization using the clonal selection principle, IEEE Transactions on Evolutionary Computation 2002; 6(3): 239-251.
Ada GL, Nossal G. The clonal selection theory. Sci Am 1987; 257: 50-57.
Coello-Coello CA, Cortes NC. Solving multiobjective optimization problems using an artificial immune system. Genet Program Evolvable Mach 2005; 6: 163–190.
Campelo F, Guimaraes FG, Igarashi H, Ramirez JA. A clonal selection algorithm for optimization in electromagnetics. IEEE Trans Magn 2005; 41: 1736–1739.
Weisheng D, Guangming S, Li Z. Immune memory clonal selection algorithms for designing stack filters. Neurocomputing 2007; 70: 777–784.
Cuevas E, Zaldivar D, Perez-Cisneros M. A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Systems with Applications 2010; 37(7): 5265-5271.
Cuevas E, Zaldivar D, Perez-Cisneros M. Seeking multithresholds for image segmentation with Learning Automata. Machine Vision and Applications, 2010; DOI 10.1007/s00138- 010-0249-0.
Orhan E, Alper D. Artificial Immune Systems and applications in industrial problems. G.U. Journal of Science 2004; 17(1): 71-84.
Poli R, Langdon WB. Foundations of Genetic Programming. Springer, Berlin, Germany (2002).
Fabio F, Maurizio R. Comparison of artificial immune systems and genetic algorithms in electrical engineering optimization. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 2006; 25: 792-811.
Gao X, Wang X, Ovaska S. Fusion of clonal selection algorithm and differential evolution method in training cascade-correlation neural network. Expert Systems 2008; doi:10.1016/j. neucom.2008.11.004.
Yoo J, Hajela P. Immune network simulations in multicriterion design. Structural Optimization 1999; 18(2): 85-94.
Wang X, Gao XZ, Ovaska SJ. A hybrid optimization algorithm in power filter design. Proceedings of the 31st Annual Conference of the IEEE Industrial Electronics Society, Raleigh, NC, 2005: 1335-1340.
Xu X, Zhang J. An improved immune evolutionary algorithm for multimodal function optimization. Proceedings of the Third International Conference on Natural Computation, Haikou, China, 2007: 641-646.
Tang T, Qiu J. An improved multimodal artificial immune algorithm and its convergence analysis. Proceedings of the Sixth World Congress on Intelligent Control and Automation, Dalian, China, 2006: 3335-3339.
Gong M, Jiao L, Zhang L, Du H. Immune secondary response and clonal selection inspired optimizers. Progress in Natural Science 2009; 19: 237-253.
Cutello V, Narzisi G, Nicosia G, Pavone M. Clonal selection algorithms: A comparative case study using effective mutation potentials. C. Jacob et al. (Eds.): ICARIS 2005, LNCS 2005; 3627: 13–28.
Dong W, Shi G, Zhang L. Immune memory clonal selection algorithms for designing stack filters. Neurocomputing 2007; 70(4): 777-784.
Gong M, Jiao L, Zhang L. Baldwinian learning in clonal selection algorithm for optimization. Information Sciences 2010; 180(8): 1218-1236.
Gong M, Jiao L, Zhang X. A population-based artificial immune system for numerical optimization. Neurocomputing 2008; 72: 149-161.
Gonzalez RC, Woods RE. Digital Image Processing. (3rd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.
Fischer M, Bolles R. Random sample consensus: A paradigm to model fitting with applications to image analysis and automated cartography. CACM 1981; 24(6): 381-395.
Cuevas E, Zaldivar D, Pérez-Cisneros M, Ramírez-Ortegón M. Circle detection using discrete differential evolution optimization. Pattern Analysis & Applications, DOI: 10.1007/ s10044-010-0183-9, 2010.
Bresenham JE. A Linear Algorithm for Incremental Digital Display of Circular Arcs. Communications of the ACM 1987; 20: 100-106.
Van Aken JR. An efficient ellipse drawing algorithm. CG&A 1984; 4(9): 24-35.
Xu X, Zhang J. An improved immune evolutionary algorithm for multimodal function optimization. Proceedings of the Third International Conference on Natural Computation, Haikou, China, 2007: 641-646.