2010, Número 2
<< Anterior Siguiente >>
Neumol Cir Torax 2010; 69 (2)
Receptor renina/prorenina y su relación con la fibrosis pulmonar idiopática
Montes ME
Idioma: Español
Referencias bibliográficas: 53
Paginas: 116-122
Archivo PDF: 803.69 Kb.
RESUMEN
El surgimiento de un nuevo componente del sistema renina-angiotensina, el receptor de renina/prorenina, provoca un giro inesperado en la interpretación de la fisiología de este sistema, cuyo papel clásico descrito es la regulación de la presión arterial. Este nuevo receptor aporta funciones a una proteína que hasta hace una década se pensaba sólo podía hidrolizar un sustrato (angiotensinógeno). Las evidencias de los últimos años señalan que el receptor renina/prorenina podría poseer un papel importante en la remodelación de la matriz extracelular en algunas patologías fibrosantes como el riñón y el corazón. En esta revisión se presentan los hallazgos más recientes del receptor renina/ prorenina y su participación en procesos fibrosantes que también podrían estar participando de manera importante en la patogénesis de la fibrosis pulmonar idiopática.
REFERENCIAS (EN ESTE ARTÍCULO)
Pardo A, Selman M. Idiopathic pulmonary fibrosis: new insights in its pathogenesis. Int J Biochem Cell Biol 2002;34:1534-1538.
Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136-151.
Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP 3rd. Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs 2004;64:405-430.
du Bois RM. Strategies for treating idiopathic pulmonary fibrosis. Nat Rev Drug Discov 2010;9:129-140.
Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP 3rd. Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs 2004;64:405-430.
Gabriel VA. Transforming growth factor-beta and angiotensin in fibrosis and burn injuries. J Burn Care Res 2009;30:471-481.
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;214:199-210.
Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004;18:816-827.
Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 2006;70:1914-1919.
Pereira RM, dos Santos RA, da Costa Dias FL, Teixeira MM, Simões e Silva AC. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J Gastroenterol 2009;15:2579-2586.
Uhal BD, Kim JK, Li X, Molina-Molina M. Angiotensin- TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des 2007;13:1247-1256.
Liu RM. Oxidative stress, plasminogen activator inhibitor1, and lung fibrosis. Antioxid Redox Signal 2008;10: 303-319.
Kotani I, Sato A, Hayakawa H, Urano T, Takada Y, Takada A. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res 1995;77:493-504.
Senoo T, Hattori N, Tanimoto, et ál. Suppression of plasminogen activator inhibitor-1 by RNA interference attenuates pulmonary fibrosis. Thorax 2010; 65:334-340.
Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med 2008;264:224-236.
Harrison-Bernard LM. The renal renin-angiotensin system. Adv Physiol Educ 2009;33:270-274.
Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des 2003;9:715-722.
Li X, Molina-Molina M, Abdul-Hafez A, et ál. Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2006;291:L887-L895.
Uhal BD, Joshi I, True AL, et ál. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol 1995;269(6 Pt 1): L819-L828.
Wang R, Zagariya A, Ibarra-Sunga O, et ál. Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol 1999;276(5 Pt 1):L885-L889.
Paul M, Poyan Mehr A, Kreutz, R. Physiology of local renin-angiotensin systems. Physiol Rev 2006;86:747-803.
Schweda F, Friis U, Wagner C, Skott O, Kurtz A. Renin release. Physiology (Bethesda) 2007;22:310-319.
Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 2002;109:1417-1427.
Burcklé C, Bader M. Prorenin and its ancient receptor. Hypertension 2006;48: 549-551.
Bader M. The second life of the (pro)renin receptor. J Renin Angiotensin Aldosterone Syst 2007;8:205-208.
Nguyen G. The (pro)renin receptor: pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens 2007;16:129-133.
Huang Y, Wongamorntham S, Kasting J, et ál. Renin increases mesangial cell transforming growth factorbeta1and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 2006;69:105-113.
Saris JJ, ‘t Hoen PA, Garrelds IM, et ál. Prorenin induces intracellular signaling in cardiomyocytes independently of angiotensin II. Hypertension 2006;48:564-571.
Uraoka M, Ikeda K, Nakagawa Y, et ál. Prorenin induces ERK activation in endothelial cells to enhance neovascularization independently of the renin-angiotensin system. Biochem Biophys Res Commun 2009;390:1202-1207.
Huang Y, Noble NA, Zhang J, Xu C, Border WA. Reninstimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 2007;72:45-52.
He M, Zhang L, Shao Y, et ál. Inhibition of renin/prorenin receptor attenuated mesangial cell proliferation and reduced associated fibrotic factor release. Eur J Pharmacol 2009;606:155-161.
Alcazar O, Cousins SW, Striker GE, Marin-Castano ME. (Pro)renin receptor is expressed in human retinal pigment epithelium and participates in extracellular matrix remodeling. Exp Eye Res 2009;89:638-647.
Zhang J, Noble NA, Border WA, Owens RT, Huang Y. Receptor-dependent prorenin activation and induction of PAI-1 expression in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2008;295:E810-E819.
Melnyk RA, Tam J, Boie Y, Kennedy BP, Percival MD. Renin and prorenin activate pathways implicated in organ damage in human mesangial cells independent of angiotensin II production. Am J Nephrol 2009;30:232-243.
Nishina H, Wada T, Katada T. Physiological roles of SAPK/ JNK signaling pathway. J Biochem 2004;136:123-126.
Ferreiro I, Joaquin M, Islam A, et ál. Whole genome analysis of p38 SAPK-mediated gene expression upon stress. BMC Genomics 2010;11:144.
Khalil N, Xu YD, O’Connor R, Duronio V. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem 2005;280:43000-43009.
Ramirez AM, Wongtrakool C, Welch T, Steinmeyer A, Zügel U, Roman J. Vitamin D inhibition of pro-fibrotic effects of transforming growth factor beta1 in lung fibroblasts and epithelial cells. J Steroid Biochem Mol Biol 2010;118:142-150.
Schefe JH, Unger T, Funke-Kaiser H. PLZF and the (pro) renin receptor. J Mol Med 2008;86:623-627.
Schefe JH, Menk M, Reinemund J, et ál. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 2006;99:1355-1366.
Lu Y, Azad N, Wang L, et ál. Phosphatidylinositol-3- kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. Am J Respir Cell Mol Biol 2010;42:432-441.
Le Cras TD, Korfhagen TR, Davidson C, et ál. Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Pathol 2010;176:679-686.
Marwick JA, Chung KF, Adcock IM. Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis 2010;4:19-34.
Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med 2008;5:e62.
Königshoff M, Balsara N, Pfaff EM, et ál. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 2008;3:e2142.
Salazar KD, Lankford SM, Brody AR. Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2009;297:L1002-L1011.
Cruciat CM, Ohkawara B, Acebron SP, et ál. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010;327:459- 463.
Chaudhary NI, Roth GJ, Hilberg F, et ál. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J 2007;29:976-985.
Huang J, Siragy HM. Glucose promotes the production of interleukine-1beta and cyclooxygenase-2 in mesangial cells via enhanced (Pro)renin receptor expression. Endocrinology 2009;150:5557-5565.
Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res 2009;10:100.
Contrepas A, Walker J, Koulakoff A, et ál. A role of the (pro)renin receptor in neuronal cell differentiation. Am J Physiol Regul Integr Comp Physiol 2009; 297:R250-R257.
Cuadra AE, Shan Z, Sumners C, Raizada MK. A current view of brain renin-angiotensin system: Is the (pro)renin receptor the missing link? Pharmacol Ther 2010;125:27-38.
Ramser J, Abidi FE, Burckle, et ál. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet 2005;14:1019-1027.