2010, Número 3
<< Anterior Siguiente >>
Residente 2010; 5 (3)
Radiofármacos para PET, una nueva perspectiva de la medicina nuclear molecular en México
Ávila-Rodríguez MA, Alva-Sánchez H
Idioma: Español
Referencias bibliográficas: 27
Paginas: 103-110
Archivo PDF: 238.87 Kb.
RESUMEN
La creciente disponibilidad y uso de la tomografía por emisión de positrones (PET) en el diagnóstico y manejo de enfermedades ha experimentado un crecimiento exponencial en los últimos años y actualmente juega un papel esencial en la oncología, neurología y cardiología clínica. Esta técnica de imagenología molecular, cuya aplicación en el pasado estaba restringida a ser una herramienta sólo en investigación básica, es ahora más accesible en el ámbito clínico gracias a los avances tecnológicos y a la creación de centros regionales de producción de radiofármacos que permiten su distribución a centros de diagnóstico u hospitales que carecen de un ciclotrón para su producción. El radiofármaco para PET más comúnmente utilizado es la [
18F]fluorodeoxiglucosa, mejor conocido como FDG. Sin embargo, el uso del FDG está limitado a estudios de procesos fisiológicos relacionados con el metabolismo glucolítico, de ahí la necesidad de contar con radiofármacos adicionales para el estudio de otros procesos fisiológicos de interés clínico que nos permitan aprovechar al máximo el potencial de esta técnica de diagnóstico. En este trabajo se hace una revisión del estado actual del PET en México, así como de los avances recientes en cuanto a la producción de nuevos radiofármacos en la Facultad de Medicina de la UNAM.
REFERENCIAS (EN ESTE ARTÍCULO)
Bicher BJ, Wehrl HF, Judenhofer MS. Latest Advances in Molecular Imaging Instrumentation. J Nucl Med 49, (2008) 5S-23S.
Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci 2000. USA, 97: 9226-9233.
Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. European J Nucl Med 2002; 29(1): 98-114.
Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med 2002; 32(1): 6-12.
Hanahan D, Weinberg RA. «The Hallmarks of Cancer». Cell 2000; 100: 57-70.
Shields AF, Grierson JR, Kozawab SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 1996; 23(1): 17-22.
Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 2007; 37(6): 451-61.
Morand P, Machulla HJ, Picchio M et al. Hypoxia-Specific Tumor Imaging with 18F-Fluoroazomycin Arabinoside. J Nucl Med 2005; 46(1): 106-113.
Yagle KJ, Eary JF, Tait JF et al. Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 2005; 46(4): 658-66.
Zhang X, Xiong Z, Wu Y et al. Quantitative PET imaging of tumor integrin avb3 expression with 18F-FRGD2. J Nucl Med 2006; 47(1): 113-121.
Wester HJ, Schottelius M, Scheidhauer K et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide. Eur J Nucl Med Mol Imaging 2003; 30(1): 117-122.
Becherer A, Szabó M, Karanikas G. Imaging of Advanced Neuroendocrine Tumors with 18F-FDOPA PET. J Nucl Med 2004; 45(7): 1161-1167.
Mankoff DA, TewsonTJ, Eary JF. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 1997; 24(4): 341-348.
DeGrado TR, Baldwin SW, Wang S et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42(12): 1805-1814.
Becherer A, Karanikas G, Szabó M et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 2003; 30(11): 1561-1567.
Oyama N, Akino N, Kanamaru N et al. 11C-Acetate PET Imaging of Prostate Cancer. J Nucl Med 2003; 43(2): 181-186.
Mukherjee J, Christian BT, Dunigan KA. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 2002; 46(3): 170-188.
Marshall V, Grosset D. Role of dopamine transporter imaging in routine clinical practice. Mov Disord 2003; 18(12): 1415-1423.
De Jesus OT, Endres CJ, Shelton SE et al. Evaluation of fluorinated m-tyrosine analogs as PET imaging agents of dopamine nerve terminals: comparison with 6-fluoroDOPA. J Nucl Med 1997; 38: 630-636.
Ng S, Villemagne VL, Berlangieri S. Visual Assessment Versus Quantitative Assessment of 11C-PIB PET and 18F-FDG PET for Detection of Alzheimer’s Disease. J Nucl Med 2007; 48(4): 547-552.
Slifstein M, Hwang DR, Martinez D. Biodistribution and Radiation Dosimetry of the Dopamine D2 Ligand 11C-Raclopride Determined from Human Whole-Body PET. J Nucl Med 2006; 47(2): 313-319.
Frey KA, Koeppe RA, Kilbourn MR. Imaging the vesicular monoamine transporter. Adv Neurol 2001; 86: 237-247.
Stone CK, Pooley RA, DeGrado TR et al. Myocardial Uptake of the Fatty Acid Analog 14-Fluorine- 18-Fluoro-6-Thia-Heptadecanoic Acid in Comparison to Beta-Oxidation Rates by Tritiated Palmitate. J Nucl Med 1998; 39: 1690-1696.
Sciacca RR, Akinboboye O, Chou RL et al. Measurement of Myocardial Blood Flow with PET Using 1-11C-Acetate. J Nucl Med 2001; 42(1): 63-70.
Buckman BO, Van Brocklin HG, Dence CS et al. Synthesis and tissue biodistribution of [omega-11C]palmitic acid. A novel PET imaging agent for cardiac fatty acid metabolism. J Med Chem 1994; 37(15): 2481-2485.
Münch G, Nguyen N, Nekola S et al. Evaluation of Sympathetic Nerve Terminals With [11C]Epinephrine and [11C]Hydroxyephedrine and Positron Emission Tomography. Circulation 200; 101: 516-523.
Vallabhajosula S. Molecular Imaging, Radipharmaceuticals for SPECT and PET. Springer-Verlag, Primera Edición, 2009.