2002, Número 5
<< Anterior
Rev Med Inst Mex Seguro Soc 2002; 40 (5)
Estrategias neuroprotectoras después de una lesión traumática de la médula espinal
Díaz RA, Guízar SG, Ríos CC
Idioma: Español
Referencias bibliográficas: 110
Paginas: 437-455
Archivo PDF: 177.45 Kb.
RESUMEN
La lesión traumática de la médula espinal es un problema de salud pública que afecta principalmente a la población económicamente activa, con una incidencia anual de aproximadamente 20 nuevos casos por cada millón de habitantes. Actualmente no se cuenta con ninguna estrategia terapéutica efectiva para restablecer la función neurológica normal, debido a la complejidad para regular los mecanismos de daño secundario, así como a la baja capacidad de regeneración espontánea que se observa en el sistema nervioso central maduro. Existe una gran cantidad de estudios experimentales que describen los mecanismos fisiopatológicos desencadenados después de una lesión, y con base en estos antecedentes se ha abordado el problema proponiendo el uso de diversos fármacos neuropro-tectores como la metilprednisolona, actualmente el fármaco de elección en pacientes con trauma-tismo medular. Así mismo, existen estudios en animales donde la estrategia es el uso de an-tagonistas de los receptores n-metil-D-aspartato para contrarrestar el efecto excitotóxico que favorece la muerte celular, de fármacos secuestradores de radicales libres para modular el estrés oxidante (el mexilatin y el OPC-14117), y de in-munosupresores (ciclosporina-A y el tacrolimus), entre otros. Por otra parte, los trasplantes de células indiferenciadas y de células gliales en el sitio de la lesión parecen ser otra buena alternativa para favorecer los procesos de regeneración axonal. Finalmente, se ha propuesto que el incremento en la síntesis y en la secreción de diversos factores tróficos es importante para una recuperación funcional.
REFERENCIAS (EN ESTE ARTÍCULO)
Berkowitz M, Harvey C, Greene C, Wilson S. The economic consequences of traumatic spinal cord injury. New York: Demos Medical Publishing; 1992.
Pardini CM. Epidemiología de la lesión medular traumática en el Distrito Federal. Tesis doctoral, Secretaría de Salubridad y Asistencia, México, 1998.
Zeiling G, Dolev M, Weidarden H, Blumen N, Shemesh Y, Ohry A. Long-term and mortality after spinal cord injury: 50 years of follow-up. Spinal Cord 2000;38(9):563-566.
Lemke M, Demediuk P, McIntosh TK, Vink R, Faden AI. Alterations in tissue Mg++. Na+ and spinal cord edema following impact trauma in rats Bioch Cioph Res Com 1987;147(3):1170-1175.
Young W, Koreh I. Potassium and calcium changes in injured spinal cords. Brain Res 1986; 365(1):42-53.
Balentine JD. Spinal cord trauma: In search of the meaning of granular axoplasm and vesicular myelin. J Neuropath Exp Neurol 1988;47(2):77-92.
Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 1988;23(6):623-626.
Braughler JM, Hall ED. Involvement of lipid peroxidation in CNS injury. J Neurotrauma 1992;9 (Suppl 1):S1-S7.
Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD. Basic neurochemistry molecular, cellular and medical aspects. Sixth edition. New York: Lippincott Raven; 1998.
Ducker TB, Zeidman SM. Spinal cord injury. Role of steroid therapy. Spine 1994;19(20):2281-2287.
Espersen GT, Ernst E, Vestergaard M, Pedersen JO, Grunnet N. Changes in PMN leukocytes migration activity and complement C3d level in RA patients with high disease activity during steroid treatment. Scand J Rheumatol 1989;18(1):51-56.
Becker J, Grasso RJ. Suppression of phagocytosis by dexamethasone in macrophage culture: Inability of arachidonic acid, indometacin and nordihydroguaiaretic acid to reverse the inhibitory response mediated by a steroid-inducible factor. Int J Immunopharmacol 1985;7(6):839-847.
Schleimer RP, Freeland HS, Peters SP, Brown KE, Derse CP. An assessment of the effects of gluco-corticoids on degranulation, quemotaxis, binding to vascular endothelium and formation leukotriene B4 by purified human neutrophils. J Pharmacol Exp Ther 1989;250(2)598-605.
Bartholdi D, Schwab ME. Methylprednisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the cat. Brain Res 1995;672(1-2):177-186.
Hargreaves KM, Costella A. Glucocorticoids suppress levels of immunoreactive bradykinin in inflamed tissue as evaluated by micro dialysis probes. Clin Pharmacol Ther 1990; 48(2):168-178.
Williams KI, Higgs GA. Eicosanoids and inflammation. J Pathol 1988;156(2):101-110.
Flowers RJ. Glucocorticoids and inhibition of phospholipase A2. En: Schleimer RP, Claman HN, Oronsky AL, editors. Antiinflammatory steroid action: Basic and clinical aspects. New York, USA: Academic Press; 1989.
Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 1984;25(1):45-52.
Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, et al. Methylprednisolone and neurological function 1 year after spinal cord injury study. J Neurosurg 1985;63(5):704-713.
Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. Results of the second National Acute Spinal Cord Injury Study. N Engl J Med 1990;322(20):1405-1411.
Bracken, MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the Second National Acute Spinal Cord Injury Study. J Neurosurg 1992;76(1):23-31.
Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997;277(20):597-604.
Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Adrich EF, Fazl M, et al. Methylprednisolone of tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Result of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. J Neurosurg 1998;89(5):699-706.
Braughler JM, Chase RL, Neff GL, Yonkers PA, Day JS, Hall ED, et al. A new 21-aminoesteroid antioxidant Lacking glucocorticoid activity stimulates adrenocorticotropin secretion and block araquidonic acid release from pituitary tumor (AtT-20) cells. J Pharmacol Exp Ther 1988;244(2):423-427.
Hall ED, Yonkers PA, Andrus PK, Cox WJ, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain spinal cord injury. J Neurotrauma 1992;9(Suppl 2):S425-S442.
Coates JR, Sorjonen DC, Simpson ST, Cox RN, Wright CJ, Hudson AA, et al. Clinicopathology effect of a 21-aminoesteroid compound (U74389G) on high dose methylprednisolone on spinal cord function after stimulated spinal cord trauma. Vet Surg 1995;24(2):128-139.
Anderson DK, Braughler JM, Hall ED, Waters TR, McCall JM, Means ED. Effects of treatment with U-74600F on neurological outcome after spinal cord injury. J Neurosurg 1988;69(4):562-567.
Hall ED. Effect of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg 1988;68(3):462-465.
Olsson Y, Sharma HS, Nyberg F. The opioid receptor antagonist naloxone influences the pathophysiology of spinal cord injury. Prog Brain Res 1995; 104:381-399.
Bracken MB, Holford TR. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS-2. J Neurosurg 1993;79(4):500-507.
Xiao J, Zhao D, Hou T, Wu K, Zeng H. Synergetic protective affects of combined blockade by two kinds of autolesion mediador receptor on neurological function after cervical cord injury. Chin Med J (Engl) 1998;111:443-446.
Chang RC, Rota C, Glover RE, Mason RP, Hong JS. A novel effect of an opioid receptor antagonist, naloxone, on the production of reactive oxygen species by microglia: a study by electron paramagnetic resonance spectroscopy. Brain Res 2000;854: 224-229.
Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal cord injury-a randomized placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324(26):1829-1838.
Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 1996;76(2):319-370.
Hukuda S, Maeda T. The role of GM-1 ganglioside in the injured spinal cord of rats: An immunohisto-chemical study using GM-1 antisera. J Neurotrauma 1996;13(3):163-170.
Rhoney DH, Luer MS, Hughes M, Hatton J. New pharmacologic approaches to acute spinal cord injury. Pharmacotherapy 1996;16(3):382-392.
Geisler FH, Coleman WP, Grieco G, Poonian D, The Sygen Study Group. The Sygen Multicenter Acute Spinal Cord Injury Study. Spine 2001;15;26 (24 Suppl):S87-S98.
Fehlings MG, Tator CH. The effect of nimodipine and dextran on axonal function and blood flow follo-wing experimental spinal cord injury. J Neurosurg 1989;71(3):403-416.
Pointillart V, Petitjean ME, Wiart L, Vital JM, Lassié P, Thicoipé M, Dabadie P. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 2000;38:71-76.
Choi DW. Ion dependence of glutamate neuroto-xicity. J Neurosci 1987;7(2):369-379.
vonEuler M, Li-Li M, Whirtemore S, Seiger A, Sundstrom E. No protective effect on the NMDA antagonist memantine in experimental spinal cord injuries. J Neurotrauma 1997;14(1):53-61.
Liu S, Ruenes GL, Yezierski RP. NMDA and non-NMDA receptor antagonists protect against excitotoxic injury in the rat spinal cord. Brain Res 1997;756(1-2):160-167.
Haghighi SS, Johnson GC, de Vergel CF, Vergel Rivas BJ. Pretreatment with NMDA receptor antagonist MK801 improves neurophysiological outcome after an acute spinal cord injury. Neurol Res 1996;18(6):509-515.
Wada S, Yone K, Ishidou Y, Nagamine T, Nakahara S, Niiyama T, et al. Apoptosis following spinal cord injury in rats and preventive effect of N-methyl-D-aspartate receptor antagonist. J Neurosurg 1999;(1 Suppl):98-104.
Anneser JM, Horstmann S, Weydt P, Borasio GD. Activation of metabotropic glutamate receptors delays apoptosis of chick embryonic motor neurons in vitro. Neuroreport 1998;9(9):2039-2043.
Lang-Lazdunski L, Heurteauz C, Vaillant N, Widmann C, Lazdunski M. Riluzole prevents ischemic spinal cord injury caused by aortic crossclamping. J Thorac Cardiovasc Surg 1999;117 (5):881-889.
Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, et al. Reduction of spinal cord injury by administration of iloprost, a stable prostacyclin analog. J Neurosurg 1997;86(6):1007-1011.
Hamada Y, Ikata T, Katoh S, Nakauchi K, Niwa M, Kawai Y, et al. Involvement of an intercellular adhesion molecules, I-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats. J Neurochem 1996;66(4):1525-1531.
Mabon PJ, Weaver LC, Dekaban GA. Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alpha D: A potential new antiinflammatory treatment. Exp Neurol 2000;166(1):52-64.
Hallenbeck JM, Jacobs TP, Feden AI. Combined PGI2, indomethacin, and heparin improve neurological recovery after spinal trauma in cats. J Neurosurg 1983;58(5):749-754.
Kahan BD. Cyclosporine. New Engl J Med 1989; 321(25):1725-1738.
Diaz-Ruiz A, Ríos C, Duarte I, Correa D, Guízar-Sahagún G, Grijalva I, et al. Cyclosporin-A inhibits lipid peroxidation after spinal cord injury in rats. Neurosci Lett 1999;266(1):61-64.
Diaz-Ruiz A, Ríos C, Duarte I, Correa D, Guízar-Sahagún G, Grijalva I, et al. Lipid peroxidation inhibition in spinal cord injury: Cyclosporin-A vs. methylprednisolone. Neuroreport 2000;11(8):1765-1767.
Gold BG, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci 1995;15(11):7509-7516.
Bavetta S, Hamlyn Pj, Burnstock G, Lieberman AR, Anderson PN. The effects of FK506 on dorsal column axon following spinal cord injury in adult rats: Neuroprotection and local regeneration. Exp Neurol 1999;158(2):382-393.
Taoka Y, Okajima K, Uchiba M, Murakami K, Harada N, Johno M, et al. Gabexate mesylate, a synthetic protease inhibitor, prevents compression-induced spinal cord injury by inhibiting activation of leukocytes in rats. Crit Care Med 1997;25(5):874-879.
Kaptanoglu E, Caner HH, Surucu HS, Akbiyik F. Effect of mexiletine on lipid peroxidation and early ultrastructural findings in experimental spinal cord injury. J Neurosurg 1999;91(2 Suppl):200-204.
Abe K, Morita S, Kikuchi T, Itoyama Y. Protective effect of a novel free radical scavenger, OPC-14117, on wobbler mouse motor neuron disease. J Neurosci Res 1997;48(1):63-70.
Horakova L, Stolc S. Antioxidant and pharmacodynamic effects of pyridoindole stobadine. Gen pharmacol 1998;30(5):627-638.
Nemoto T, Sekikawa T, Suzuki T, Moriya H, Nakaya H. Inhibition of nitric oxide synthesis accelerates the recovery of polysynaptic reflex potentials after transient spinal cord ischemia in cats. Naunyn Schmiedebergs Arch Pharmacol 1997;355(4):447-451.
Hu WH, Li F, Qiang WA, Liu N, Wang GQ, Xiao J, Liu JS, Liao WH, Jen MF. Dual role for nitric oxide in dynorphin spinal neurotoxicity. J Neuro-trauma 1999;16(1):85-98.
Zeman RJ, Feng Y, Peng H, Etlinger JD. Clen-buterol, a b2 adrenoreceptor agonist improves locomotion and histological outcomes after spinal cord contusion in rats. Exp Neurol 1999;159(1):267-273.
Farooque M, Isaksson J, Jackson DM, Olsson Y. Clomethiazile (ZENDRA,CMZ) improves hind limbmotor function and reduced neuronal damage after several spinal cord injury in rat. Acta Neuro-pathol (Berl) 1999;98(1):22-30.
Suzer T, Coskun E, Islekel H, Tahta K. Neuropro-tective effect of magnesium on lipid peroxidation and axonal function after experimental spinal cord injury. Spinal Cord 1999;37(7):480-484.
Segal JL, Pathak MS, Hernández LP, Himber PL, Brunnemann SR, Charter RS. Safety and efficacy of 4-aminopyridine in humans with spinal cord injury: A long-term, controlled trial. Pharmacotherapy 1999; 19(6):713-723.
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999;49(6): 377-391.
Huber AB, Schwab ME. Nogo-A a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 2000;38(5-6):407-419.
Beattie MS, Li Q, Bresnahan JC. Cell death and plasticity after experimental spinal cord injury. Prog Brain Res 2000;128:9-21.
Rabchevsky AG, Smith GM. Therapeutic interven-tions following mammalian spinal cord injury. Arch Neurol 2001;28:721-726.
David S. Axon growth promoting and inhibitory molecules involved in regeneration in the adult mammalian central nervous system. Ment Retard Dev Disabilities Res Rev 1998;4:171-178.
Davies SJ, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white metter of the adult rat spinal cord. J Neurosci 1999;19:5810-5822.
Pasterkamp RJ, Holtmaat A, De Wit J, De Winter F, Verhaagen J. Expression of the gene encoding the chemorepellent semaphorina III is induced in the fibroblast component of neural scar tissue formed following injures of adult but not neonatal CNS. Mol Cell Neurosci 1999;13:143-163.
Caroni P, Schwab ME. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1988;1:85-96.
Bregman BS, Kunkelbagden E, Schnell L, Dai HN, Gao D, Schwab ME. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 1995;378:498-501.
Chen MS, Huber AB, van der Daar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME. Nogo-A is a myelin. Nature 2000;403:434-439.
GrandPre T, Nakamura F, Vartanian T, Strittmatter SM. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 2000; 407:963-970.
Brittis PA, Flanagan JG. Nogo domains and a Nogo receptor: Implications for axon regeneration. Neuron 2001;30:11-14.
Oudega M, Hagg T. Nerve growth factor promotes regeneration of sensory axons into the adult rat spinal cord. Exp Neurol 1996;140(2):218-229.
Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000;403(6767):312-316.
Tuszynski MH. Gene therapy for nervous system disease. Ann NY Acad 1997;835(19):1-11.
Novikov L, Novikova L, Kellerth JO. Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 1997;79(3):765-774.
Rabchevsky AG, Fugaccia I, Fletcher-Turner A, Blades DA, Mattson MP, Scheff SW. Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J Neurotrauma 1999;16(9):817-830.
Teng YD, Mocchetti I, Wrathall JR. Basic and acidic fibroblast growth factors protect spinal motor neurons in vivo after experimental spinal cord injury. Eur J Neurosci 1998;10(2):798-802.
Teng YD, Mocchetti I, Taveira-DaSilva AM, Gillis RA, Wrathall JR. Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 1999; 19(16):7037-7047.
Lee TT, Green BA, Dietrich WD, Yezierski RP. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat. J Neurotrauma 1999;16(5):347-356.
Zompa EA, Cain LD, Everhart AW, Moyer MP, Hulsebosch CE. Transplant therapy: recovery of function after spinal cord injury. J Neurotrauma 1997;14(8):479-506.
Taoka Y, Okajima K. Spinal cord injury in the rat. Prog Neurobiol 1998;56(3):341-358.
McDonald JW. Repairing the damage spinal cord. Sci Am 1999;281(3):64-73.
Rossignol S, Chau C, Brustein E, Belanger M, Barbeau H, Drew T. Locomotor capacities after complete and partial lesion of the spinal cord. Acta Neurobiol Exp (Warsz) 1996;56:449-463.
Gimenez-y-Ribotta M, Orsal D, Feraboli-Lohnherr D, Privat A. Recovery of locomotion following transplantation of monoaminergic neurons in the spinal cord of paraplegic rats. Ann NY Acad Sci 1998;860:393-411.
Dumouli A, Privat A, Gimenez-y-Ribotta M. Transplantation of embryonic Rafe cells regulates the modifications of the gabaergic phenotype occurring in the injured spinal cord. Neuroscience 2000;5:173-182.
Bamber NI, Li H, Aebischer P, Xu XM. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords. Neural Plast 1999;6:103-121.
Jeffery ND, Crang AJ, O’Leary MT, Hodge SJ, Blakemore WF. Behavioral consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesion in the rat spinal cord. Eur J Neurosci 1999; 11(5):1508-1514.
Tessier-Lavigne M, Goodman CS. Perspectives: neurobiology. Regeneration in the nogo zone. Science 2000;287(5454):813-814.
Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB. Schwann cell genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 1998;10(2):607-621.
Chen A, Xu XM, Kleitman N, Bunger MB. Methylprednisolone administration improves axonal regeneration intro cell grafts in transected adult rat thoracic spinal cord. Exp Neurol 1996;138:261-276.
Franklin RJ, Crang AJ, Blakemore WF. Transplant-ed type-1 astrocytes facilitate repair of demyelinat-ing lesions by host oligodendrocytes in adult rat spinal cord. J Neurocytol 1991;20(5):420-430.
Kliot M, Smith GM, Siegal JD, Silver J. Astrocyte-polymer implants promotes regeneration of dorsal root fibers into the adult mammalian spinal cord. Exp Neurol 1990;109(1):57-69.
Robchevsky AG, Streit WJ. Role of microglia in postinjury repair and regeneration of the CNS. Ment Retard Dev Disabilities Res Rev 1998;4;187-192.
Barami K, Díaz FG. Cellular transplantation and spinal cord injury. Neurosurgery 2000;47:691-700.
Zompa EA, Cain LD, Everhart AW, Moyer MP, Hulsebosch CE. Transplant therapy: Recovery of function after spinal cord injury. J Neurotrauma 1997;14:479-506.
Reier PJ, Stokes BT, Thomson FJ, Anderson DK. Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp Neurol 1992;115:177-188.
McDonal JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DJ, Choi DW. Transplanted embryonic stem cell survive differentiate and promote recovery in injured rat spinal cord. Nat Med 1999;5:1410-1412.
McTigue DM, Horner PJ, Stokes BT, Gage FH. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 1998;18:5354-5365.
Levy ML, Gams W, Wijesinghe HS, SooHoo WE, Adkins RH, Stillerman CB. Use of methylprednisolone as an adjunct in the management of patients with penetrating spinal cord injury: Outcome analysis. Neurosurgery 1996;39:(6)1141-1149.
Bracken MB, Holford TR. Effect of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NACIS-2. J Neurosourg 1993;79(4):500-507.
Goodman GA. The pharmacological basis of the therapeutics. New York: Mc-Graw-Hill; 1990.
Jones LL, Oudega M, Bunge MB, Tuszynski MH. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 2001;15(533):83-89.
Dumont RJ, Verma S, Okonkwo O, Hurbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury. Part II: Contemporary pharmaco-therapy. Clin Neuropharm 2001;24(5):265-279.
Schwab ME. Reparing the injured spinal cord. Science 2002;295:1029-1031.