2009, Número 1-2
<< Anterior Siguiente >>
Microbiología 2009; 51 (1-2)
La relación entre el sistema antioxidante y la virulencia en Ustilago maydis, un hongo fitopatógeno
Sierra-Campos E, Pardo JP
Idioma: Ingles.
Referencias bibliográficas: 86
Paginas: 7-17
Archivo PDF: 276.73 Kb.
RESUMEN
Los hongos durante su ciclo de vida se encuentran continuamente expuestos a condiciones ambientales tóxicas. Un importante ejemplo de estrés es cuando el hongo debe contrarrestar las altas concentraciones de ROS producidas por su hospedero durante el estallido oxidativo. El hongo Ustilago maydis (D.C.) Corda es un modelo para el estudio de la interacción planta-patógeno, debido a que el análisis genómico provee un medio para conocer las posibles respuestas celulares del hongo contra las especies reactivas producidas durante su interacción con la planta. Sin embargo, muy poco se conoce acerca de sus sistemas antioxidantes y su relevancia durante la virulencia. Esta revisión se enfoca en la búsqueda de secuencias en el genoma de U. maydis involucradas en la respuesta al estrés oxidativo. Finalmente, se comparan diferentes respuestas de defensa y cómo éstas contribuyen a la virulencia de los hongos patógenos.
REFERENCIAS (EN ESTE ARTÍCULO)
Adak S, Bilwes AM, Panda K, Hosfield D, Aulak KS, McDonald JF, Tainer TA, Getzoff ED, Crane BR, Stuehr DJ. 2002. A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity. Proc. Natl. Acad. Sci. USA 99: 107-112.
Affourtit C, Albury MS, Crichton PG, Moore AL. 2002. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett. 510: 121-126.
Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13: 111-118.
Akhter S, McDade HC, Gorlach JM, Heinrich G, Cox GM, Perfect JR. 2003. Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans. Infect. Immun. 71: 5794-5802.
Arner ES, Holmgren A. 2000. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102-6109.
Beltran B, Orsi A, Clementi E, Moncada S. 2000. Oxidative stress and S-nitrosylation of proteins in cells. Br. J. Pharmacol. 129: 953-960.
Benov L, Fridovich I. 1998. Growth in iron-enriched medium partially compensates E. coli for the lack of Mn and Fe SOD. J. Biol. Chem. 273: 10313-10316.
Bentley R. 1963. Glucose oxidase. In. The enzymes, 2nd ed., Boyer, P. D., Lardy, H., Myrback, K., Eds.; Academic Press: New York, chapter 24, pp 567-586.
Berkessel A, Dousset M, Bulat S, Glaubitz K. 2005. Combinatorial approaches to functional models for galactose oxidase. Biol. Chem. 386: 1035-1041.
Bortfeld, M., K. Auffarth, R. Kahmann & C. W. Basse. 2004. The Ustilago maydis a2 mating-type locus genes Iga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. Plant Cell 16: 2233-2248.
Brown GC. 1999. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1411: 351-369.
Bucke CL. 1983. Glucose transforming enzymes. In: Fogarty WN (ed) Microbial enzymes and biotechnology. Appl. Sci. Publishers, London, pp 111-123.
Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. 1999. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat, Res. 424: 37-49.
Collinson EJ, Grant CM. 2003. Role of yeast glutaredoxins as glutathione S-transferases. J. Biol. Chem. 278: 22492-22497.
Choi GJ, Lee HJ, Cho KY. 1997. Involvement of catalase and superoxide dismutase in resistance of Botrytis cinerea to dicarboximide fungicide vinclozolin. Pesticide Biochem. Physiol. 59: 1-10.
de Jesus-Berrios M, Liu L, Nussbaum JC, Cox GM, Stamler JS, Heitman J. 2003. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13: 1963-1968.
Emanuelsson O, Henrik Nielsen H, Brunak S, von Heijne G. 2000. Predicting subcellular localization of proteins based on their n-terminal amino acid sequence. J. Mol. Biol. 300: 1005-1016.
Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64: 97-112.
Garre V, Müller U, Tudzynski P. 1998. Cloning, characterization and target disruption of cpcat1, coding for an in planta secreted catalase of Claviceps purpurea. Mol. Plant-Microbe Interact. 11: 772-783.
Giles SS, Perfect JR, Cox GM. 2005. Cytochrome c peroxidase contribuye to the antioxidant defense of Cryptococcus neoformans. Fungal Genet. Biol. 42. 20-29.
Gralla EB, Kosman DJ. 1992. Molecular genetics of superoxide dismutases in yeast and related fungi. Adv. Genet. 30: 251-310.
Grant CM. 2001. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 39: 533-541.
Golderer G, Werner ER, Leitner S, Grobner P, Werner-Felmayer G. 2001. Nitric oxide synthase is induced in sporulation of Physarum polycephalum. Gen. Dev. 15: 1299-1309.
Goss SP, Singh RJ, Hogg N, Kalyanaraman B. 1999. Reactions of NO, NO2 and peroxynitrite in membranes: physiological implications. Free Radic. Res. 31: 597-606.
Halliwell B, Gutteridge JMC. 1989. In free Radicals in Biology and Medicine (Halliwell, B and Gutteridge, JMC, eds), 2 nd edn. Claredon Press, Oxford.
Hamilton AJ, Holdom MD. 1999. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med. Mycol. 37: 375-389.
Hirt RP, Miller S, Embley TM, Coombs GH. 2002. The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol. 18: 302-308.
Huh W-K, Kang S-O. 2001. Characterization of the gene family encoding alternative oxidase from Candida albicans. Biochem. J. 356: 595-604.
Hwang C-S, Baek Y-U, Yim H-S, Kang S-O. 2003. Protective role of mitochondrial manganese-containing superoxide dismutase against various stresses in Candida albicans. Yeast 20: 929-941.
Inoue Y, Kimura A. 1995. Methylglyoxal and regulation of its metabolism in microorganisms. Adv. Microb. Physiol. 37: 177-227.
Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009.
Ito-kuwa S, Nakamura K, Aoki S, Osafune T, Vidotto V, Pienthaweechai K. 1999. Oxidative stress sensitivity and superoxide dismutase of a wild-type parent strain and a respiratory mutant of Candida albicans. Med. Mycol. 37: 307-314.
Jamieson DJ. 1998. Oxidative stress response of the yeast. Saccharomyces cerevisiae. Yeast. 14: 1511-1527.
Janse BJH, Gaskell J, Akhtar M, Cullen D. 1998. Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl. Environ. Microbiol. 64: 3536-3538.
Ji XB, Hollocher TC. 1988. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem. Biophys. Res. Commun. 157: 106-108.
Jones DP. 2006. Disruption of mitochondrial redox circuitry in oxidative stress. Chem. Biol. Interact. 163: 38-53
Joseph-Horne T, Hollomon DW, Wood PM. 2001. Fungal respiration : A fusion of standard and alternative components. Biochim. Biophys. Acta. 1504: 179-195.
Kämper J, Kahmann R, Bölker M, Ma L, Brefort T, Saville BJ, et al. 2006. Insights from the genome of the biotrophic fungal pathogen Ustilago maydis. Nature 444: 97-101.
Kelly RL, Reddy CA. 1986. Purification and characterization of glucose oxidase from ligninolytic cultures of Phaenerochaete chrysosporium. J. Bacteriol. 166: 269-274.
Kersten PJ, Kirk TK. 1987. Involvement of a new enzyme, glyoxal oxidase, in extacellular hydrogen peroxide production by Phanerochaete chrysosporium. J. Bacteriol. 169: 2195-2201.
Klesing DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA 97:8849-8855.
Kono Y, Fridovich I. 1965. Isolation and characterization of the cyanide-resistant and azide-resistant catalase of Lactobacillus plantarum. J. Bacteriol. 90: 352-356.
Kono Y, Yamamoto H, Takeuchi M, Komada H. 1995. Alterations in superoxide dismutase and catalase in Fusarium oxysporum. Biochim. Biophys. Acta 1268:35-40.
Kwon M, Chong S, Han S, Kim K. 2003. Oxidative stresses elevate the expression of cytochrome c peroxidase in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1623: 1-5.
Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH. 2005. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol. Genet. Genomics 272: 639-650.
Liu L, Zeng M, Hausladen A, Heitman J, Stamler JS. 2000. Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl. Acad. Sci. USA 97: 4672-4676.
Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. 2001. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410: 490-494.
Liu S, Oeljeklaus S, Gerhardt B, Tudzynski B. 1998. Purification and characterization of glucose oxidase of Botrytis cinerea. Phisiol. Mol. Plant Pathol. 53: 123-132.
Martínez-Espinoza A, García-Pedrajas MD, Gold S. (2002). The ustilaginales as plant pests and model systems. Fungal Genet. Biol. 35: 1-20.
Mayer AM, Harel E. 1979. Polyphenol oxidases in plants. Phytochem. 31: 193-215.
Meister A, Anderson ME. 1983. Glutathione. Annu. Rev. Biochem. 52: 711-760.
Mendgen K, Hahn M. 2002. Plant infection and the establishment of fungal biotrophy. Trends plant Sci. 7: 352-356.
Misall TA, Lodge JK. 2005. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Eukariotic Cell 4: 487-489.
Missall TA, Cherry-Harris JF, Logde JK. 2005. Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology 151: 2573-2581.
Missall TA, Pusateri ME, Lodge JK. 2004. Thiol peroxidase is critical for virulence and resistance to nitric oxide and peroxide in the fungal pathogen, Cryptococcus neoformans. Mol. Microbiol. 51: 1447-1458.
Molina L, Kahmann R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19: 2293-2309.
Moradas-Ferreira P, Costa V, Piper P, Mager W. 1996. The molecular defenses against reactive oxygen species in yeast. Mol. Microbiol. 19: 651-658.
Moore AL, Albury MS, Crichton PG, Affourtit C. 2002. Function of the alternative oxidase: is it still a scavenger? Trends in Plant Sci. 7: 478-481.
Muller U. 1997. The nitric oxide system in insects. Prog. Neurobiol. 51: 363-381.
Murphy MP. 1998. Peroxynitrite: A biologically significant oxidant. Gen. Pharmac. 31: 179-186.
Narasipura SD, Chatarvedi V, Chaturvedi S. 2005. Characterization of Cryptoccoccus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol. Microbiol. 55: 1782-1800.
Nedeva TS, Petrova VY, Zamfirova DR, Stephanova EV, Kujumdzieva AV. 2004. Cu/Zn superoxide dismutase in yeast mitocondria –a general phenomenon. FEMS Microbiol. Lett. 230: 19-25.
Nohl H. 1994. Generation of superoxide radicals as byproduct of cellular respiration. Ann. Biol. Clin. 52: 199-204.
Paris S, Wysong D, Debeaupuis JP, et al. 2003. Catalases of Aspergillus fumigatus. Infect. Immun. 71: 3551-3562.
Robbertse B, Yoder OC, Nguyen A, Schoch CL, Turgeon GB. 2003. Deletion of all Cochliobolus heterostrophus monofunctional catalase encoding genes reveals a role for one in sensitivity to oxidative stress but none with a role in virulence. Mol. Plant-Microbe interact. 16: 1013-1021.
Salvemini F, Franze A, Iervolino A, Filosa S, Salzano S, Ursini MV. 1999. Enhanced glutathione levels and oxidoresistance mediated by increased glucose 6 phosphate dehydrogenase expression. J. Biol. Chem. 274: 2750-2757.
Scherer M, Wei H, Liese R, Fischer R. 2002. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryotic Cell 1: 725-735.
Schomburg D, Salzmann M, Stephan D. 1994. In: Enzyme Handbook. Vol. 7. Eds,: Springer-Verlag: Berlin, Heidelberg.
Schouten H, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, Van kan JAL. 2002. Functional analysis of an extracellular catalase of Botrytis cinerea. Mol. Plant Pathol. 3: 227-238.
Sierra-Campos E, Velázquez I, Matuz-Mares D, Villavicencio-Queijeiro A, Pardo JP. 2009. Functional properties of the Ustilago maydis alternative oxidase under oxidative stress conditions. Mitochondrion 9: 96-102.
Skulachev VP. 1997. Membrane-linked systems preventing superoxide formation. Biosci. Rep. 17: 347-366.
Stamler JS, Lamas S, Fang FC. 2001. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106: 675-683.
Takaya N. 2002. Dissimilatory nitrate reduction metabolisms and their control in fungi. J. Biosci. Bioeng. 94: 506-510.
Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER. 1999. Peroxynitrite mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc. Natl. Acad. Sci. USA 96: 7809-7814.
Toledo IP, Rangel P, Hansberg W. 1995. Redox imbalance at the start of each morphogenetic step of Neurospora crassa conidiation. Arch. Biochem. Biophys. 319: 519-524.
Torres MA, Dangl JL, Jones JD. 2002. Arabidopsis gp91 phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99: 517-522.
Trotter E, Grant CM. 2003. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep. 4: 184-188.
Vaughan M. 1997. Oxidative modification of macromolecules. J. Biol. Chem. 272: 18513.
Wendehenne D, Pugin A, Klessig DF, Durner J. 2001. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6: 177-183.
Wood ZA, Schroder E, Robin-Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40.
Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD. 1998. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun. 66: 1953-1961.
Xu XQ, Pan SQ. 2000. An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol. Microbiol. 35: 407-414.
Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y. 2001. Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide: Biology and Chemistry 5: 261-270.
Yonetani T, Ohnishi T. 1996. CcP, a mitochondrial enzyme of yeast. J. Biol. Chem. 241: 2983-2984.
Zámocky M, Dunand C. 2006. Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases. FEBS Lett. 580: 6655-6664.
Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Res. 61: 533-616.