2010, Número 1
<< Anterior Siguiente >>
Ortho-tips 2010; 6 (1)
Padecimientos sistémicos que afectan el metabolismo óseo
Preciado SA
Idioma: Español
Referencias bibliográficas: 27
Paginas: 31-38
Archivo PDF: 92.86 Kb.
RESUMEN
El esqueleto, además de sus funciones de sostén y protección de órganos, contribuye con importantes procesos metabólicos como son la hematopoyesis y la reserva de calcio y fósforo. Durante toda la vida se llevan a cabo tres funciones: Calcificación, reposo y resorción. aproximadamente 40 años se forma la masa ósea pero después de esta edad predomina la resorción y por lo tanto aumenta el riesgo de fracturas. Existen factores externos o estados patogénicos que pueden obstaculizar la formación de una masa ósea óptima o acelerar la resorción. La edad en sí es un factor que progresivamente activa este proceso. Sin embargo, padecimientos como la diabetes, trastornos renales y tumores malignos, entre otros, pueden consumir en forma exagerada la masa ósea. También terapias como el uso de corticoides o inmunosupresores y algunos estilos de vida como sedentarismo y alcoholismo incrementan este proceso y ocasionan osteoporosis en forma prematura y severa.
REFERENCIAS (EN ESTE ARTÍCULO)
Baron R. Chapter 1. Anatomy and ultrastructure of bone. Histogenesis, growth and remodeling. En: ENDOTEXT Publication online. Updated May 13, 2008.
Deftos LJ. Clinical Essentials of Calcium and Skeletal Metabolism. Professional Communication Inc., 1998: 1-208.
Siris E, Brenneman S, Barrett-Connor E, et al. The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50-99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporosis Int 2006; 17(4): 565-574.
Kannus P, Haapasalo H, Sankelo M, Sievanen H. Effect of Starting Age of Physical Activity on Bone Mass in the Dominant Arm of Tennis and Squash Players. Ann Intern Med 1995; 123(1): 27-31.
Colleti L, Edwards J, Gordon L, et al. The effects of muscle building exercise on bone mineral density of the radius, spine and hip in young men. Calcif Tissue Int 1989; 45(1): 12-14.
Czernichow P, Dunger DB, Savage MO. Growth and Metabolic Disorders in Chronic Paediatric Diseases. Proceedings of a workshop. Cambridge, United Kingdom. December 10-11, 2001. Horm Res 2002; 58, Suppl. 1: 1-89.
Hardin DS, Arumugama R, Seilheimer DK, LeBlanc A, Ellis KJ. Normal bone mineral density in cystic fibrosis. Arch Dis Child 2001 84(4): 363-368.
Carpenter P, Hoffmeister P, Chesnutt CH 3rd, et al. Biphosphonate therapy for Reduced Bone Mineral Density in Children with Chronic graft-versus-host Disease. Biol Blood Marrow Transplant 2007; 13(6): 683-690.
Abrams S, O’Brien KO. Calcium and Bone Mineral Metabolism in Children with Chronic Illnesses. Annu Rev Nutr 2004; (24): 13-32.
Hui SL, Slemenda CW, Johnston CC Jr. Age and Mass as predictors of Fractures a Prospective Study. J Clin Invest 1988; 81(6): 1804-1809.
Perry HM 3rd, Bernard M, Horowitz M, et al. The effect of aging on bone mineral metabolism and bone mass in Native American Women. J Am Geriatr Soc 1998; 46(11): 1418-1422.
Acosta CA, Navarro DD, Díaz SC. Calidad del hueso en mujeres de edad mediana con diabetes mellitus tipo 2. Rev Cubana Endocrinol 2008 19(1):
Levin ME, Boisseau VC, Avioli LV. Effects of diabetes mellitus on bone mass in juvenile and adult onset diabetes mellitus. N Engl J Med 1976; 294(5): 241-245.
Rishaug U, Birkeland KI, Falch J, Vaaler S. Bone mass in non insulin-dependent diabetes mellitus. Scand J Clin Lab Invest 1995; 55(3): 257-262.
Llach F, Fernández E. Overview of renal bone disease. Causes of treatment failure, clinical observations, the changing pattern of bone lesions, and future therapeutic approach. Kidney Int Suppl 2003; 87: 113-119.
Spasovski GB, Bervoets AR, Behets GJ, et al. Spectrum of renal bone disease in end-stage renal failure patients not yet in dialysis. Nephrol Dial Transplant 2003; 18(6): 1116 -1159.
Ureña P. El receptor PTH/PTH RP. Implicaciones Biológicas. Nefrología 2003; XXIII Suplemento 2.
Budayr A, Nissenson R, Klein R. Increased serum levels of a parathyroid hormone-like protein in malignancy-associated hypercalcemia. Ann Intern Med 1989; 111(10); 807-812.
Grill V, Ho P, Body J, Johanson N. Parathyroid hormone-related protein: elevated levels in both humoral hypercalcemia of malignancy and hypercalcemia complicating metastatic breast cancer. J Clin Endocrinol Metab 1991; 73(6) 1309-1315.
Iqbal F, Michaelson J, Thaler L. Declining bone mass in men with chronic pulmonary disease: contribution of glucocorticoid treatment, body mass index, and gonadal function. Chest 1999; 116 (6): 1616-1624.
Porter SE, Hanley EN. The Musculoskeletal Effects of Smoking. J Am Acad Orthop Surg January/February; 9 (1): 9-17.
Carey E, Balan V. Metabolic Bone Disease in Patients with Liver Disease. Current Gastroenterology Reports 2003; 5: 71–77.
Sorrell MF. Effects of alcohol consumption on bone metabolism in elderly women. American Journal of Clinical Nutrition 2000; 72(5): 1073.
Whitney C, Warburton DE, Frohlich J, Chan SY, McKay H, Khan K. Are cardiovascular disease and osteoporosis directly linked? Sports Med 2004; 34(12): 779-807.
Soyka L. Grinspoon S. Levitsky L. The Effects of Anorexia Nervosa on Bone Metabolism in Female Adolescents. Journal of Clinical Endocrinology & Metabolism 2001; 84(12): 4489-4496.
B Uzzan J, Campos M, Cucherat P, Nony JP. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. Journal of Clinical Endocrinology & Metabolism 1996; 81: 4278-4289.
Toh SH, Claunch BC, Brown PH. Effect of Hyperthyroidism and Its Treatment on Bone Mineral Content. Arch Intern Med 1985; 145(5): 883-886.