2009, Número 4
<< Anterior
Bioquimia 2009; 34 (4)
Hiperinsulinismo en lactantes y niños: cuando el nivel de insulina no siempre es suficiente
Palladino AA, Bennett MJ, Stanley CA
Idioma: Español
Referencias bibliográficas: 66
Paginas: 202-212
Archivo PDF: 197.25 Kb.
RESUMEN
Antecedentes: La hipoglucemia en lactantes y niños puede conducir a convulsiones, retraso en el desarrollo y a lesión cerebral permanente. El hiperinsulinismo (HI) es la causa más común de ambos desórdenes de hipoglucemia transitorio y permanente. El HI se ha caracterizado por falla en la secreción de insulina, dando como resultado hipoglucemia persistente que va de leve a severa. Las diversas formas de HI representan a un grupo de desórdenes clínica, genética y morfológicamente heterogéneas.
Contenido: El hiperinsulinismo congénito está asociado a mutaciones de SUR-1 y Kir6.2, glucocinasa, glutamato deshidrogenasa, deshidrogenasa 3- hydroxiacil CoA de cadena corta y la expresión ectópica de
SLC16A1 en la membrana celular de las células β. El HI puede estar asociado con el estrés perinatal, tal como la asfixia de nacimiento, toxemia materna, nacimiento prematuro o retraso en el crecimiento intrauterino, dando como resultado hipoglucemia neonatal prolongada. Los simuladores del hiperinsulinismo incluyen panhipopituitarismo, hipoglucemia inducida por medicamentos, insulinoma, anticuerpos estimuladores del receptor de insulina y anti-insulinismo, síndrome de Beckwith-Wiedemann y desórdenes congénitos en la glucosilación. Las pruebas de laboratorio para el hiperinsulinismo pueden incluir la cuantificación de glucosa en sangre; insulina, β-hidroxibutirato, ácidos grasos, amonio y perfil de acilcarnitina plasmáticos, y ácidos orgánicos urinarios. Las pruebas genéticas están disponibles a través de laboratorios comerciales para genes conocidos asociados al hiperinsulinismo. Las pruebas de respuesta aguda a la insulina son útiles para la caracterización fenotípica. Las pruebas de imagen e histología son herramientas disponibles para el diagnóstico y clasificación del hiperinsulinismo. El objetivo del tratamiento en niños con hiperinsulinismo tiene como finalidad prevenir daño cerebral debido a la hipoglucemia y mantener los niveles de glucosa en plasma arriba de 700 mg/L (70 mg/dL) por medio de la terapia farmacológica o quirúrgica.
Resumen: El manejo del hiperinsulinismo requiere áreas multidisciplinarias que incluyen a endocrinólogos pediátricos, radiólogos, cirujanos y patólogos, quienes están entrenados para el diagnóstico, identificación y tratamiento del hiperinsulinismo.
REFERENCIAS (EN ESTE ARTÍCULO)
McQuarrie I. Idiopathic spontaneously occurring hypoglycemia in infants: clinical significance of problem and treatment. AMA Am J Dis Child. 1954; 87: 399-428.
DeLeón DD, Stanley CA. Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab. 2007; 3: 57-68.
Yakovac WC, Baker L, Hummeler K. b-cell nesidioblastosis in idiopathic hypoglycemia of infancy. J Pediatr. 1971; 79: 226-31.
Rahier J, Guiot Y, Sempoux C. Persistent hyperinsulinaemic hypoglycaemia of infancy: a heterogeneous syndrome unrelated to nesidioblastosis. Arch Dis Child Fetal Neonatal. Ed 2000; 82: F108-12.
Dekelbab BH, Sperling MA. Recent advances in hyperinsulinemic hypoglycemia of infancy. Acta Paediatr. 2006; 95: 1157-64.
Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science (Wash DC). 1995; 268: 426-9.
Thomas P, Ye Y, Lightner E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet. 1996; 5: 1809-12.
Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med. 1998; 338: 226-30.
Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998; 338: 1352-7.
Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, et al. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of oxidation in insulin secretion. J Clin Invest. 2001; 108: 457-65.
Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS, Parton LE, et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic b-cells. Am J Hum Genet. 2007; 81: 467-74.
Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev. 2004; 84: 239-75.
Fournet JC, Junien C. The genetics of neonatal hyperinsulinism. Horm Res. 2003; 59(Suppl 1): 30-4.
Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL, Rahier J, et al. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest. 2000; 106: 897-906.
Thornton PS, MacMullen C, Ganguly A, Ruchelli E, Steinkrauss L, Crane A, et al. Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes. 2003; 52: 2403-10.
Magge SN, Shyng SL, MacMullen C, Steinkrauss L, Ganguly A, Katz LE, Stanley CA. Familial leucine-sensitive hypoglycemia of infancy due to a dominant mutation of the b-cell sulfonylurea receptor. J Clin Endocrinol Metab. 2004; 89: 4450-6.
Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of b-cell ATP-sensitive potassium channels. J Biol Chem. 2006; 281: 3006-12.
Verkarre V, Fournet JC, de Lonlay P, Gross-Morand MS, Devillers M, Rahier J, et al. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest. 1998; 102: 1286-91.
Sempoux C, Guiot Y, Dahan K, Moulin P, Stevens M, Lambot V, et al. The focal form of persistent hyperinsulinemic hypoglycemia of infancy: morphological and molecular studies show structural and functional differences with insulinoma. Diabetes. 2003; 52: 784-94.
Stanley CA. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Mol Genet Metab. 2004; 81(Suppl 1): S45-51.
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic b-cells. Cell. 2006; 126: 941-54.
Kelly A, Li C, Gao Z, Stanley CA, Matschinsky FM. Glutaminolysis and insulin secretion: from bedside to bench and back. Diabetes. 2002; 51(Suppl 3): S421-26.
Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA. Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr. 2001; 138: 383-9.
Raizen DM, Brooks-Kayal A, Steinkrauss L, Tennekoon GI, Stanley CA, Kelly A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J Pediatr. 2005; 146: 388-94.
Matschinsky FM. Regulation of pancreatic b-cell glucokinase: from basics to therapeutics. Diabetes. 2002; 51(Suppl 3): S394-404.
de Lonlay P, Giurgea I, Sempoux C, Touati G, Jaubert F, Rahier J, et al. Dominantly inherited hyperinsulinaemic hypoglycaemia. J Inherit Metab Dis. 2005; 28: 267-76.
Christesen HB, Jacobsen BB, Odili S, Buettger C, Cuesta-Munoz A, Hansen T, et al. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes. 2002; 51: 1240-6.
Gloyn AL, Noordam K, Willemsen MA, Ellard S, Lam WW, Campbell IW, et al. Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycemia mutations. Diabetes. 2003; 52: 2433-40.
Cuesta-Munoz AL, Huopio H, Otonkoski T, Gomez-Zumaquero JM, Nanto-Salonen K, Rahier J, et al. Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes. 2004; 53: 2164-8.
Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njølstad PR, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004; 53: 221-7.
Hussain K, Clayton PT, Krywawych S, Chatziandreou I, Mills P, Ginbey DW, et al. Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr. 2005; 146: 706-8.
Bennett MJ, Russell LK, Tokunaga C, Narayan SB, Tan L, Seegmiller A, et al. Reye-like syndrome resulting from novel missense mutations in mitochondrial medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase. Mol Genet Metab. 2006; 89: 74-9.
Eaton S, Chatziandreou I, Krywawych S, Pen S, Clayton PT, Hussain K. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with hyperinsulinism: a novel glucose-fatty acid cycle? Biochem Soc Trans. 2003; 31: 1137-9.
Meissner T, Friedmann B, Okun JG, Schwab MA, Otonkoski T, Bauer T, et al. Massive insulin secretion in response to anaerobic exercise in exercise-induced hyperinsulinism. Horm Metab Res. 2005; 37: 690-4.
Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, et al. Physical exercise induced hyperinsulinemic hypoglycemia is an autosomal dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes. 2003; 52: 199-204.
Hoe FM, Thornton PS, Wanner LA, Steinkrauss L, Simmons RA, Stanley CA. Clinical features and insulin regulation in infants with syndrome of prolonged neonatal hyperinsulinism. J Pediatr. 2006; 148: 207-12.
DeBaun MR, King AA, White N. Hypoglycemia in Beckwith-Wiedemann syndrome. Semin Perinatol. 2000; 24: 164-71.
Böhles H, Sewell AA, Gebhardt B, Reinecke-Lüthge A, Klöppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia: leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis. 2001; 24: 858-62.
de Lonlay P, Cuer M, Vuillaumier-Barrot S, Beaune G, Castelnau P, Kretz M, et al. Hyperinsulinemic hypoglycemia as a presenting sign in phosphomannose isomerase deficiency: a new manifestation of carbohydrate-deficient glycoprotein syndrome treatable with mannose. J Pediatr. 1999; 135: 379-83.
Babovic-Vuksanovic D, Patterson MC, Schwenk WF, O’Brien JF, Vockley J, Freeze HH, et al. Severe hypoglycemia as a presenting symptom of carbohydrate- deficient glycoprotein syndrome. J Pediatr. 1999; 135: 775-81.
Sun L, Eklund EA, Chung WK, Wang C, Cohen J, Freeze HH. Congenital disorder of glycosylation id presenting with hyperinsulinemic hypoglycemia and islet cell hyperplasia. J Clin Endocrinol Metab. 2005; 90: 4371-5.
Ferry RJ Jr., Kelly A, Grimberg A, Koo-McCoy S, Shapiro MJ, Fellows KE, et al. Calcium-stimulated insulin secretion in diffuse and focal forms of congenital hyperinsulinism. J Pediatr. 2000; 137: 239-46.
Grimberg A, Ferry RJ Jr, Kelly A, Koo-McCoy S, Polonsky K, Glaser B, et al. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes. 2001; 50: 322-8.
Stanley CA, Thornton PS, Ganguly A, MacMullen C, Underwood P, Bhatia P, et al. Preoperative evaluation of infants with focal or diffuse congenital hyperinsulinism by intravenous acute insulin response tests and selective pancreatic arterial calcium stimulation. J Clin Endocrinol Metab. 2004; 89: 288-96.
Giurgea I, Laborde K, Touati G, Bellanne´ -Chantelot C, Nassogne MC, Sempoux C, et al. Acute insulin responses to calcium and tolbutamide do not differentiate focal from diffuse congenital hyperinsulinism. J Clin Endocrinol Metab. 2004; 89: 925-9.
Kelly A, Ng D, Ferry RJ Jr., Grimberg A, Koo-McCoy S, Thornton PS, Stanley CA. Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab. 2001; 86: 3724-8.
Dubois J, Brunelle F, Touati G, Sebag G, Nuttin C, Thach T, et al. Hyperinsulinism in children: diagnostic value of pancreatic venous sampling correlated with clinical, pathological and surgical outcome in 25 cases. Pediatr Radiol. 1995; 25: 512-6.
Ribeiro MJ, De Lonlay P, Delzescaux T, Boddaert N, Jaubert F, Bourgeois S, et al. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med. 2005; 46: 560-6.
Otonkoski T, Näntö -Salonen K, Seppänen M, Veijola R, Huopio H, Hussain K, et al. Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes. 2006; 55: 13- 8.
Hardy OT, Hernandez-Pampaloni M, Saffer JR, Suchi M, Ruchelli E, Zhuang H, et al. Diagnosis and localization of focal hyperinsulinism by 18Ffluorodopa PET scan. J Pediatr. 2007; 150: 140-5.
Hardy OT, Hernandez-Pampaloni M, Saffer JR, Scheuermann JS, Ernst LM, Freifelder R, et al. Accuracy of [18F]-fluorodopa PET for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab. 2007; 92: 4706-11.
Ericson LE, Hakanson R, Lundquist I. Accumulation of dopamine in mouse pancreatic b-cells following injection of L-DOPA: localization to secretory granules and inhibition of insulin secretion. Diabetologia. 1977; 13: 117-24.
Borelli MI, Villar MJ, Orezzoli A, Gagliardino JJ. Presence of DOPA decarboxylase and its localization in adult rat pancreatic islet cells. Diabetes Metab. 1977; 23: 161-3.
Munns CF, Batch JA. Hyperinsulinism and Beckwith-Wiedemann syndrome. Arch Dis Child Fetal Neonatal Ed. 2001; 84: F67-9.
Suchi M, Thornton PS, Adzick NS, MacMullen C, Ganguly A, Stanley CA, Ruchelli ED. Congenital hyperinsulinism: intraoperative biopsy interpretation can direct the extent of pancreatectomy. Am J Surg Pathol. 2004; 28: 1326-35.
Menni F, de Lonlay P, Sevin C, Touati G, Peigne´ C, Barbier V, et al. Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics. 2001; 107: 476-9.
Steinkrauss L, Lipman TH, Hendell CD, Gerdes M, Thornton PS, Stanley CA. Effects of hypoglycemia on developmental outcome in children with congenital hyperinsulinism. J Pediatr Nurs. 2005; 20: 109-18.
Leibowitz G, Glaser B, Higazi AA, Salameh M, Cerasi E, Landau H. Hyperinsulinemic hypoglycemia of infancy (nesidioblastosis) in clinical remission: high incidence of diabetes mellitus and persistent b-cell dysfunction at long term follow up. J Clin Endocrinol Metab. 1995; 80: 386-92.
Meissner T, Wendel U, Burgard P, Schaetzle S, Mayatepek E. Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur J Endocrinol. 2003; 149: 43-51.
Finegold DN, Stanley CA, Baker L. Glycemic response to glucagon during fasting hypoglycemia: an aid in the diagnosis of hyperinsulinism. J Pediatr. 1980; 96: 257-9.
Geffner ME. Hypopituitarism in childhood. Cancer Control. 2002; 9: 212-22.
Grant CS. Insulinoma. Best Pract Res Clin Gastroenterol. 2005; 19: 783-98.
Redmon JB, Nuttall FQ. Autoimmune hypoglycemia. Endocrinol Metab Clin North Am. 1999; 28: 603-18.
Seltzer HS. Drug-induced hypoglycemia: a review of 1,418 cases. Endocrinol Metab Clin North Am. 1989; 18: 163-83.
Stanley CA, Baker L. Hyperinsulinism in infancy: diagnosis by demonstration of abnormal response to fasting hypoglycemia. Pediatrics. 1976; 57: 702-11.
Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev. 1998; 19: 608-24.