2009, Número 2
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2009; 22 (2)
Bases genéticas y moleculares de alfa-1 antitripsina (SERPINA1) y su papel en la EPOC
Falfán-Valencia R, Silva-Zolezzi I, Pérez-Rubio G, Camarena Á, Morales-Mandujano F, Montaño M, Ramírez-Venegas A
Idioma: Español
Referencias bibliográficas: 60
Paginas: 124-136
Archivo PDF: 117.73 Kb.
RESUMEN
La determinación obligada de alfa-1 antitripsina en todos los individuos con enfermedad pulmonar obstructiva crónica (EPOC) es una medida adoptada recientemente por la
American Thoracic Society, el
American College of Chest Physicians, la
European Respiratory Society, la Organización Mundial de la Salud y la
American Association for Respiratory Care. Adicionalmente, investigadores básicos y clínicos se han dedicado a la tarea de estimar la frecuencia poblacional de los alelos de riesgo (PiZ y PiS, principalmente) asociados a la deficiencia de alfa-1 antitripsina. Por otro lado, dicha deficiencia ha sido relacionada al desarrollo de EPOC mayoritariamente en poblaciones caucásicas, aunque ya existen reportes de frecuencias poblacionales elevadas en individuos de origen distinto a la raza blanca, entre ellos africanos, árabes, neozelandeses y asiáticos, entre otros. Desafortunadamente, se carece de datos sobre la frecuencia de dichos polimorfismos en poblaciones latinoamericanas, que poseen un alto grado de mestizaje producto de la mezcla de genes de poblaciones de nativos americanos y europeos llegados con el descubrimiento y conquista de América, además de las continuas olas migratorias de europeos debidas a expatriaciones, exilios políticos o guerras. La presente revisión busca abundar en los conceptos genéticos, moleculares y epidemiológicos de la deficiencia de alfa1- antitripsina y la relación que guarda con la EPOC.
REFERENCIAS (EN ESTE ARTÍCULO)
Schultze HE, Heide K, Haupt H. Alpha1-Antitrypsin from human serum. Klin Wochenschr 1962;15:427-429.
Jacobsson K.I. Studies on the determination of fibrinogen in human blood plasma. II. Studies on the trypsin and plasmin inhibitors in human blood serum. Scand J Clin Lab Invest 1955;7(Suppl 14):3-102.
Russi EW. Alpha-1 antitrypsin: now available, but do we need it? Swiss Med Wkly 2008;138:191-196.
Larsson C, Eriksson S, Dirksen H. Smoking and intermediate alpha1-antitrypsin deficiency and lung function in middle-aged men. Br Med J 1977;2:922-925.
Lomas DA, Parfrey H. Alpha1-antitrypsin deficiency. 4: Molecular pathophysiology. Thorax 2004;59:529-535.
Kuzemko JA. Chopin’s illnesses. J R Soc Med 1994;87:769-772.
Eriksson S. Did Chopin suffer of antitrypsin deficiency? Lost autopsy protocol has caused frustration among physicians of our time in their attempts to confirm the diagnosis. Lakartidningen 2003;100:2449-2454.
Sveger T, Mazodier P. Alpha 1-antitrypsin screening of 18-year-old men. Thorax 1979;34:397-400.
Genetics Home Reference. Fecha de acceso: 18-VIII-2009. Accesible en: http://ghr.nlm.nih.gov/gene= serpina1
HUGO Gene Nomenclature Committee. Fecha de acceso: 18-VIII-2009. Accesible en: http://www. genenames.org/data/hgnc_data.php?hgnc_id=8941
Silverman GA, Bird PI, Carrell RW, et ál. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001;276:33293-33296.
Law RH, Zhang Q, McGowan S, et ál. An overview of the serpin superfamily. Genome Biol 2006;7:216.
Forsyth S, Horvath A, Coughlin P. A review and comparison of the murine alpha1-antitrypsin and alpha1-antichymotrypsin multigene clusters with the human clade A serpins. Genomics 2003;81:336-345.
Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 1988;336:257-258.
Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 1994;269:15957-15960.
Nagata K. Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 1996;21:27-30.
Zou Z, Anisowicz A, Hendrix MJ, et ál. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994;263:526-529.
Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000;407:923-926.
Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn—>Asp). J Clin Invest 1994;94:2265-2274.
Aulak KS, Pemberton PA, Rosen FS, Carrell RW, Lachmann PJ, Harrison RA. Dysfunctional C1-inhibitor(At), isolated from a type II hereditary-angio-oedema plasma, contains a P1 ‘reactive centre’ (Arg444—His) mutation. Biochem J 1988;253:615-618.
Davis RL, Shrimpton AE, Holohan PD, et ál. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999;401:376-379.
Baek JH, Im H, Kang UB, et ál. Probing the local conformational change of alpha1-antitrypsin. Protein Sci 2007;16:1842-1850.
Vidal R, Blanco I, Casas F, Jardí R, Miravitlles M; and Committee on the National Registry of Individuals with Alpha-1 Antitrypsin Deficiency. Guidelines for the diagnosis and management of alpha-1 antitrypsin deficiency. Arch Bronconeumol 2006;42: 645-659.
Kalsheker N, Morley S, Morgan K. Gene regulation of the serine proteinasa inhibitors alpha1-antitrypsin and alpha1-antichymotrypsin. Biochem Soc Trans 2002;30:93-98.
Ensembl genome browser. Fecha de acceso: 18-VII-2009. Accesible en: http://www.ensembl.org/Homo_ sapiens/Gene/Summary?db=core;g= ENSG000 00197249;r=14:94843084-94857029; t=ENST00000440909
Morgan K, Marsters P, Morley S, et ál. Oncostatin M induced alpha1-antitrypsin (AAT) gene expression in Hep G2 cells is mediated by a 3’ enhancer. Biochem J 2002;365(Pt 2):555-560.
Perlino E, Cortese R, Ciliberto G. The human alpha 1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J 1987;6:2767-2771.
American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med 2003;168:818-900.
Demeo DL, Sandhaus RA, Barker AF, et ál. Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. Thorax 2007;62:806-813.
Fregonese L, Stolk J, Frants RR, Veldhuisen B. Alpha-1 antitrypsin Null mutations and severity of emphysema. Respir Med 2008;102:876-884.
Dahl M, Hersh CP, Ly NP, Berkey CS, Silverman EK, Nordestgaard BG. The protease inhibitor PI*S allele and COPD: a meta-analysis. Eur Respir J 2005;26:67-76.
Fabbretti G, Sergi C, Consales G, et ál. Genetic variants of alpha-1-antitrypsin (AAT). Liver 1992;12(4 Pt 2):296-301.
Gaillard MC, Zwi S, Nogueira CM, et ál. Ethnic differences in the occurrence of the M1(ala213) haplotype of alpha-1-antitrypsin in asthmatic and non-asthmatic black and white South Africans. Clin Genet 1994;45:122-127.
Gupta J, Bhadoria DP, Lal MK, et ál. Association of the PIM3 allele of the alpha-1-antitrypsin gene with chronic obstructive pulmonary disease. Clin Biochem 2005;38:489-491.
Cox DW, Levison H. Emphysema of early onset associated with a complete deficiency of alpha-1-antitrypsin (null homozygotes). Am Rev Respir Dis 1988;137:371-375.
Hofker MH, Nukiwa T, van Paassen HM, et ál. A Pro-Leu substitution in codon 369 of the alpha-1-antitrypsin deficiency variant PI MHeerlen. Hum Genet 1989;81:264-268.
Graham A, Kalsheker NA, Bamforth FJ, Newton CR, Markham AF. Molecular characterization of two alpha-1-antitrypsin deficiency variants: proteinase inhibitor (Pi) Null(Newport) (Gly115Ser) and (Pi) Z Wrexham (Ser19Leu). Hum Genet 1990;85:537-540.
Zorzetto M, Ferrarotti I, Campo I, et ál. Identification of a novel alpha1-antitrypsin null variant (Q0Cairo). Diagn Mol Pathol 2005;14:121-124.
Cook L, Janus ED, Brenton S, Tai E, Burdon J. Absence of alpha-1-antitrypsin (Pi Null Bellingham) and the early onset of emphysema. Aust N Z J Med 1994;24:263-269.
Seyama K, Nukiwa T, Souma S, Shimizu K, Kira S. Alpha 1-antitrypsin-deficient variant Siiyama (Ser53[TCC] to Phe53[TTC]) is prevalent in Japan. Status of alpha 1-antitrypsin deficiency in Japan. Am J Respir Crit Care Med 1995;152(6 Pt 1):2119-2126.
Ferrarotti I, Baccheschi J, Zorzetto M, et ál. Prevalence and phenotype of subjects carrying rare variants in the Italian registry for alpha1-antitrypsin deficiency. J Med Genet 2005;42:282-287.
Hutchison DC. Alpha 1-antitrypsin deficiency in Europe: geographical distribution of Pi types S and Z. Respir Med 1998;92:367-377.
De Serres FJ. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest 2002;122:1818-1829.
Cox DW, Woo SL, Mansfield T. DNA restriction fragments associated with alpha 1-antitrypsin indicate a single origin for deficiency allele PI Z. Nature 1985;316:79-81.
Seixas S, Garcia O, Trovoada MJ, Santos MT, Amorim A, Rocha J. Patterns of haplotype diversity within the serpin gene cluster at 14q32.1: insights into the natural history of the alpha1-antitrypsin polymorphism. Hum Genet 2001;108:20-30.
Dahl M, Nordestgaard BG, Lange P, Vestbo J, Tybjaerg-Hansen A. Molecular diagnosis of intermediate and severe alpha(1)-antitrypsin deficiency: MZ individuals with chronic obstructive pulmonary disease may have lower lung function than MM individuals. Clin Chem 2001;47:56-62.
Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG. Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: A longitudinal study of the general population. Ann Intern Med 2002;136: 270-279.
Zorzetto M, Russi E, Senn O, et ál; and SAPALDIA Team. SERPINA1 gene variants in individuals from the general population with reduced alpha1-antitrypsin concentrations. Clin Chem 2008;54:1331-1338.
Senn O, Russi EW, Schindler C, et ál. Circulating alpha1-antitrypsin in the general population: determinants and association with lung function. Respir Res 2008;9:35.
Lomas DA. The selective advantage of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 2006;173:1072-1077.
Elkington PT, Friedland JS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006;61:259-266.
McAloon CJ, Wood AM, Gough SC, Stockley RA. Matrix metalloprotease polymorphisms are associated with gas transfer in alpha 1 antitrypsin deficiency. Ther Adv Respir Dis 2009;3:23-30.
DeMeo DL, Hersh CP, Hoffman EA, et ál. Genetic determinants of emphysema distribution in the national emphysema treatment trial. Am J Respir Crit Care Med 2007;176:42-48.
Joos L, He JQ, Shepherdson MB, et ál. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet 2002;11: 569-576.
Demeo DL, Campbell EJ, Barker AF, et ál. IL10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol 2008;38:114-120.
Sallenave JM, Si Tahar M, Cox G, Chignard M, Gauldie J. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. J Leukoc Biol 1997;61:695-702.
Hollander C, Westin U, Wallmark A, Piitulainen E, Sveger T, Janciauskiene SM. Plasma levels of alpha1-antichymotrypsin and secretory leukocyte proteinase inhibitor in healthy and chronic obstructive pulmonary disease (COPD) subjects with and without severe alpha1-antitrypsin deficiency. BMC Pulm Med 2007;7:1.
Whalen R, Boyer TD. Human glutathione S-transferases. Semin Liver Dis 1998;18:345-358.
Zimniak P, Nanduri B, Pikula S, et ál. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem 1994;224:893-899.
Rodriguez F, de la Roza C, Jardi R, Schaper M, Vidal R, Miravitlles M. Glutathione S-transferase P1 and lung function in patients with alpha1-antitrypsin deficiency and COPD. Chest 2005;127:1537-1543.