2000, Número 1
<< Anterior Siguiente >>
Rev Biomed 2000; 11 (1)
Dopamina: síntesis, liberación y receptores en el Sistema Nervioso Central
Bahena-Trujillo R, Flores G, Arias-Montaño JA
Idioma: Español
Referencias bibliográficas: 110
Paginas: 39-60
Archivo PDF: 117.00 Kb.
RESUMEN
La dopamina es el neurotransmisor catecolaminérgico más importante del Sistema Nervioso Central (SNC) de los mamíferos y participa en la regulación de diversas funciones como la conducta motora, la emotividad y la afectividad así como en la comunicación neuroendócrina. La dopamina se sintetiza a partir del aminoácido Ltirosina y existen mecanismos que regulan de manera muy precisa su síntesis y liberación. Las técnicas de clonación molecular han permitido la identificación de 5 tipos de receptores dopaminérgicos, todos ellos acoplados a proteínas G y divididos en dos familias farmacológicas denominadas D
1 y D
2. Los receptores de la familia D
1 (subtipos D
1 y D
5) están acoplados a proteínas Gs y estimulan la formación de AMPc como principal mecanismo de transducción de señales. Los subtipos pertenecientes a la familia D
2 (D
2, D
3 y D
4) inhiben la formación de AMPc, activan canales de K
+ y reducen la entrada de iones de Ca
2+ a través de canales dependientes del voltaje, efectos mediados también por proteínas G (Gαi y Gαo). Los receptores dopaminérgicos se encuentran ampliamente distribuidos en diversas áreas del SNC (aunque de manera diferencial de acuerdo al subtipo) donde son responsables de las diversas acciones fisiológicas de la dopamina. El estudio de los sistemas y receptores dopaminérgicos del SNC ha generado gran interés, debido a que diversas alteraciones en la transmisión dopaminérgica han sido relacionadas, directa o indirectamente, con transtornos severos como la enfermedad de Parkinson y la esquizofrenia, así como con la adicción a drogas (anfetaminas y cocaína por ejemplo).
REFERENCIAS (EN ESTE ARTÍCULO)
Fibiger HC. Mesolimbic dopamine: an analysis of its role in motivated behavior. Semin Neurosci 1993; 5:321-27.
Jackson DM, Westlind-Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioral aspects. Pharmacol Ther 1994; 64: 291-369.
Feldman RS, Meyer JS, Quenzer LF. Principles of neuropsychopharmacology. Sunderland, Sinauer, 1997: 277-344.
Robbins-Trevor W. Milestones in dopamine research. Semin. Neurosci. 1992; 4:93-7.
Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature 1979; 277:93-6.
Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988; 336:783-7.
Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 7th. Ed. New York/Oxford, Oxford University Press, 1996:293-351.
Fuxe K. Evidence for the existence of monoaminecontaining neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 1965; 64, (Suppl. 247): 37-85.
Freund TF, Powell JF, Smith AD. Tyrosine hydroxylaseimmunoreactive boutons in synaptic contac with identified striatonigral neurons, with particular reference to dendritic spines. Neurosci 1984; 13:1189-215.
Nagatsu T, Levitt M, Uderfriend S. Tyrosine hydroxilase: the initial step in norepinephrine biosynthesis. J Biol Chem 1964; 239:2910-7.
Levitt M, Spctor S, Sjoerdsma A, Udenfriend S. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J Pharmacol Exp Ther 1965; 23:1493-501.
Ledley FD, Grenett HE, Woo SLC. Structure of aromatic amino acid hydrolases. En: Kaufman S. Amino acids in Health and disease: new perspectives. New York: Alan R. Liss: 1987. p. 267-84.
Weiner N, Molinoff PB. Cathecolamines. En: Siegel GJ, Agranoff B, Albers RW, Molinoff PB eds. Basic Neurochemistry. 4th Ed. New York: Raven Press; 1989. p. 233-51.
Nagatsu T. Biopterin cofactor and regulation of monoamine-synthesizing mono-oxygenase. Trends Pharmacol Sci 1981; 2:276-9.
Kaufman S. The enzymology of the aromatic amino acid hydrolases. En: Kaufman S ed. Amino acids in health and disease: new perspectives. New York: Alan R. Liss, 1987:205-232.
Arias-Montaño JA. Modulación de la síntesis de dopamina por receptores presinápticos. Tesis doctoral, Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, 1990.
Carlsson A. The in vivo estimation of rates of tryptophan and tyrosine hydroxylation: effects of alteration in enzyme enviroment and neuronal activity. En: Kaufman S ed. Aromatic amino acids in the brain. Amsterdam: Elsevier; 1974. p. 117-34.
Kaufman S. Properties of pterin-dependent aromatic amino acid hydrolases. En: Kaufman S ed. Aromatic amino acids in the brain. Amsterdam: Elsevier; 1974. p. 108-15.
Fujisawa H, Okuno S. Regulation of tyrosine hydroxylase activity by its products and cyclic AMPdependent protein kinase. En: Kaufman S ed. Amino acids in health and disease: new perspectives. New York: Alan R. Liss; 1987. p. 245-66.
Fujisawa H., Okuno S. Regulation of the activity of tyrosine hydroxylase in the central nervous system. Adv Enzym Reg 1987; 28:93-110.
McGeer PL, Eccles JC, McGeer EG. Molecular neurobiology of the mammalian brain. 2nd. New Yor: Plenum Press; 1987. p. 265-317.
Zigmond, MJ, Schwarzschild MA, Rittenhouse AR. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylatio. Ann Rev Neurosci 1989; 12:415-61.
Hetey L, Kudrin V, Shemanov A, Rayevsky K, Delssner V. Presynaptic dopamine and serotonin receptors modulating tyrosine hydroxylase activity in synaptosomes of nucleus accumbens of rats. Eur J Pharmacol 1985; 43: 327-30.
Onali P, Olianas MC. Involvement of adenylate cyclase inhibition in dopamine autoreceptor regulation of tyrosine hydroxylase in rat nucleus accumbens. Neurosci Lett 1989; 102:91-6.
Dwonskin LP, Zhaniser NR. Robust modulation of [3H]-dopamine release from striatal slices by D2-dopamine receptors. J Pharm Exp Ther 1986; 239:442-53.
Watanabe H. D1-type of dopamine autoreceptors are not involved in the regulation of dopamine synthesis in the striatum. Japan J Pharmacol 1987; 43:327-30.
Magnuson O, Mohringe R, Fowier CJ. Comparison of the effects on dopamine D1 and D2 receptors antagonists on rat striatal, limbic and nigral dopamine synthesis and utilisation. J Neural Transm 1987; 69:163-77.
Bowyer JF, Weiner N. Modulation of the Ca2+ evoked release of [3H] dopamine from striatal synaptosomes by dopamine (D2) agonists and antagonists. J Pharm Exp Ther 1987; 241:27-33.
Boyar WC, Altar CA. Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J Neurochem 1987; 48:824-31.
Herdon H, Strupish J, Nahorski SR. Endogenous dopamine release from striatal slices and its regulation by D2 autoreceptors: effects of uptake inhibitors and synthesis inhibition. Eur J Pharmacol 1987; 138:69-76.
El Mestikawy S, Hamon M. Is dopamine-induced inhibition of adenylate cyclase involved in the autoreceptor-mediated negative control of tyrosine hydroxylase in striatal dopaminergic terminals? J Neurochem 1986; 47:1425-33.
Onali P, Olianas MC, Bunse B. Evidence that adenosine A2 receptors and dopamine autoreceptors antagonistically regulate tyrosine hydroxylase activity in rat striatal synaptosomes. Brain Res 1988; 456:302-9.
Gobert A, Lejeune F, Rivet J-M, Cistarelli L, Millan MJ. Dopamine D3 (auto)receptors inhibit dopamine release in the frontal cortex of freely moving rats in vivo. J Neurochem 1996; 66: 2209-12.
Whetzel SZ, Shih YH, Georgic LM, Akunne HC, Pugsley TA. Effects of the dopamine D3 antagonist PD 58491 and its interaction with the dopamine D3 agonist PD 128907 on brain dopamine synthesis in rat. J Neurochem 1997; 69:2363-68.
Lledo PM, Homburger V, Bockaert J, Vincent J-D. Differential G protein-mediated coupling of D2 dopamine receptor to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 1992; 8:455-63.
Akaoka H, Charlety P, Saunier CF, Buda M, Chouvet G. Inhibition of nigral dopamine neurons by systemic and local apomorphine: possible contribution of dendritic autoreceptor. Neuroscience 1992; 49:879-91.
Chowdhury M, Fillenz M. Presynaptic adenosine A2 and N-methyl-D-aspartate receptors regulate dopamine synthesis in rat striatal synaptosomes. J Neurochem 1991; 56:1783-88.
Arias-Montaño JA, Martínez-Fong D, Aceves J. Glutamate stimulation of tyrosine hydroxylase is mediated by NMDA receptors in the rat striatum. Brain Res. 1992; 569:317-22.
Arias-Montaño JA, Martínez-Fong D, Aceves J. Gamma-aminobutiric acid (GABAB) receptor-mediated inhibition of tyrosine hydroxylase activity in rat striatum. Neuropharmacol. 1991; 30:1047-51.
Arias-Montaño JA, Martínez-Fong D, Aceves J. GABAB receptor activation partially inhibits N-methyl- D-aspartate-mediated tyrosine hydroxylase stimulation in rat striatal slices. Eur J Pharmacol 1992; 218:335-8.
Südhof TC. The synaptic vesicle: a cascade of proteinprotein interactions. Nature 1995; 375:645-53.
Receptor and ion channel nomenclature. Trends Pharmacol Sci 1998.
Raiteri M, Marchi M, Maura G. Presynaptic muscarinic receptors increase striatal dopamine release evoked by “quasi-physiological” depolarization. Eur J Pharmacol 1982; 83:123-9.
Leviel V, Gobert A, Guibert B. Direct observation of dopamine compartmentation in striatal nerve terminals by ‘in vivo’ measurement of the specific activity of released dopamine. Brain Res 1989; 499:205-13.
Valentijn JA, Vaudry H, Cazin L. Multiple control of calcium channel gating by dopamine D2 receptors in frog pituitary menotrophs. Ann NY Acad Sci 1993; 37:211-28.
Roberts P, McBean G, Sharif NA, Thomas E. Striatal glutamatergic function modifications following specific lesions. Brain Res 1982; 235: 83-91.
Raiteri M, Leardi R, Marchi M. Heterogeinity of presynaptic muscarinic receptors regulating neurotransmitter release in rat brain. J Pharmacol Exp Ther 1984; 228:209-14.
Cheramy A, Romo R, Godeheu G, Baruch P, Glowinski J. In vivo presynaptic control of dopamine release in the cat caudate nucleus-II. Facilitatory or inhibitory influence of L-glutamate. Neurosci 1986; 19:1081-90.
Jhamandas K, Marien M. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue. Br J Pharmacol 1987; 90:641-50.
Martínez-Fong D, Rosales MG, Góngora-Alfaro JL, Hernández S, Aceves J. NMDA receptor mediates dopamine release in the striatum of unanesthetized rats as measured by brain microdialysis. Brain Res 1992; 595:2 309-15.
Giorguieff MF, Le Flo’h ML, Glowinski J, Besson MJ. Stimulation of dopamine release by GABA in rat striatal slices. Brain Res 1978; 139:115-30.
Starr MS. GABA potentiates potassium-stimulated 3Hdopamine release from rat substantia nigra and corpus striatum. Eur J Pharmacol 1978; 48:325-8.
Lehmann J., Langer SZ. Muscarinic receptors on dopamine terminals in the cat caudate nucleus: neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine. Brain Res 1982; 248:61-9.
Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, et al. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 1980; 283: 92-4.
Reimann W, Zumstein A, Starke K. -Aminobutyric acid can both inhibit and facilitate dopamine release in the caudate nucleus of the rabbit. J Neurochem 1982; 39: 961-9.
Reimann W. Inhibition by GABA, baclofen and GABApentine of dopamine release from rabbit caudate nucleus: are there common or different sites of action. Eur J Pharmacol 1983; 94:341-4.
Iversen LL. Uptake process of biogenic amines. En: Iversen LL, Iversen SD eds. Handbook of psychopharmacology. New York: Plenum; 1975. p. 381-442.
Attwell D, Mobbs P. Neurotranmitter transporters. Curr Opin Neurobiol 1994; 4:353-9.
Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci 1993; 16: 73-93.
Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E. Cloning and expression of a cocainesensitive dopamine transporter complementary DNA. Science 1991; 254:576-8.
Reith ME, Xu C, Chen NH. Pharmacology and regulation of the neuronal dopamine transporter. Eur J Pharmacol 1997; 324:1-10.
Tipton KF, Singer TP. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 1993; 61:1191-1206.
Humphrey PPA. The characterization and classification of neurotransmitter receptors. Ann New York Acad Sci 1997; 182:1-13.
Kandel ER, Schwartz JH, Jessel TM. Principles of neural science. 3rd. Ed., New York: Apleton and Lange, 1991. p. 120-269.
Missale C, Russel NS, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998; 78:189-225.
O’Dowd BF. Structure of dopamine receptors. J Neurochem 1993; 60:804-16.
Schwartz J-C, Giros B, Martres M-P, Sokoloff P. The dopamine receptor family: molecular biology and pharmacology. Semin. Neurosci. 1992; 4: 99-108.
Dixon RAF, Sigal IS, Rands E, Register RB, Candelore MR, Blake AD, et al. Ligand binding to the -adrenergic receptor involves its rhodopsin-like core. Nature 1987; 326:73-77.
Zhou Q-Z, Grandy DK, Thambi L, Kushner JA, Van Tol HHM, Cone R, et al. Cloning and expression of human and rat D1 dopamine receptors. Nature 1990; 347:76-80.
Sunahara RK, Niznik HB, Weiner M, Stormann TM, Brann MR, Kennedy JL, et al. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 1990; 347:80-3.
Andersen PH, Gingrich JA, Bates MD, Dearry A, Falardeau P, Senogles SE, et al. Dopamine receptor subtypes: beyond the D1/ D2 classification. Trends Pharmacol Sci 1990; 11:231-6.
Del Torso R, Sommer B, Eewertt M, Herb A, Pritchett DB, Bach A, et al. The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 1989; 8:4025-34.
Sibley DR, Leff SE, Creese I. Interactions of novel dopaminergic ligands with D-1 and D-2 dopamine receptors. Life Sci 1982; 31:637-45.
Giros B, Martres MP, Sokoloff P, Schwartz JC. CDNA cloning of the human dopaminergic D3 receptor and chromosomes identification. CR Acad Sci Paris 1990; 311: 501-8.
Jaber M, Robinson S, Missale C, Caron MG. Dopamine receptors and brain function. Neuropharmacology 1996; 35:1503-19.
Huganir RL, Greengard P. Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 1990; 5:555-67.
Lefkowitz RJ, Hausdorff WP, Caron MG. Role of phosphorylation in desensitization of the -adrenoceptor. Trends Pharmacol Sci 1990; 11:190-4.
Ferguson SG, Barak LS, Zhang J, Caron MG. Gprotein- coupled receptor regulation: role of G-proteincoupled receptor kinases and arrestins. Can J Physiol Pharmacol 1996; 74:1095-110.
Watling KJ, Kebabian JW, Neumeyer JL. RBI handbook of receptor classification and signal transduction. Research Biochemicals International 1995.
Undie AS, Friedman E. Stimulation of a dopamine D1 receptor enhances inositol phosphate formation in rat brain. J Pharmacol Exp Ther 1990; 253: 987-92.
Arias-Montaño JA, Aceves J, Young JM. Carbacholinduced phosphoinositide metabolism in slices of rat substantia nigra pars reticulata. Mol Brain Res 1993; 19: 233-6.
Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, et al. Cloning, molecular characterization and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: Differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA 1991; 88:7491-5.
Strader CD, Sigal IS, Dixon RAF. Structural basis of -adrenergic receptor function. FASEB J 1989; 3:1825-32.
Sibley DR, Daniel K, Strader CD, Lefkowitz RJ. Phosphorylation of the beta-adrenergic receptor in intact cells: relationship to heterologous and homologous mechanisms of adenylate cyclase desensitization. Arch Biochem Biophys 1987; 258:24-32.
Arias-Montaño JA. Proteínas G y transducción de señales celulares. Boletín Soc Mex Ciencias Fisiológicas 1994; 1:11-7.
Soria LE, Guerrero MG, Arias-Montaño JA. Adrenoceptores: estructura, farmacología y mecanismos de transducción de señales. Rev Biomed 1996; 7:105-19.
Gómora JC, Avila G, Cota G. Ca2+ current expression in pituitary melanotrophs of neonatal rats and its regulation by D2 dopamine receptors. J Physiol 1996; 492: 763-73.
Seeman P, VanTol HHM. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994; 15:264-70.
Schwartz, J.-C, Diaz J, Bordet J, Griffon N, Perachon S, Pilon C, et al. Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence. Brain Res Rev 1998; 26:236-42.
Van Tol HHM, Bunzow J, Gusn HC, Sunahara RK, Seeman P, Nizik HB, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350:610-4.
Mansour A, Meador-Woodruff J, Burke S, Bunzow J, Akil H, Van Tol HM, et al. Differential distribution of D2 and D4 dopamine receptor mRNAs in the rat brain: an in situ hybridization study. Soc Neurosci Abstr 1991; 17:599.
Hornykiewicz O. Dopamine (3-hidroxytyramine) and brain function. Pharmacol Rev 1996; 18:925-64.
Waszczak BL, Waters JR. Dopamine modulation of effects of -aminobutyric acid on substantia nigra pars reticulata neurons. Science 1983; 220:218-21.
Johnson AE, Coirini H, Källström L, Wiesel F-A. Characterization of dopamine receptor binding sites in the subthalamic nucleus. Neuro Report 1994; 5:1836-8.
Kreiss DS, Anderson LA, Walters JR. Apomorphine and dopamine D1 receptor agonists increase the firing rates of subthalamic nucleus neurons. Neurosci 1996; 72:863-76.
Richardson EP, Adams RD. Degenerative diseases of the neorvous system. Alzheimer’s disease and Parkinson’s disease. En: Petersdorf RG, Adams RA, Braunwald E, Isselbacher KJ, Martin JB, Wilson JD eds. Harrison’s Principles of Internal Medicine. 9th Ed. New York: McGraw-Hill; 1982. p. 2119-32.
Gottwald MD, Bainbridge JL, Dowling GA, Aminoff MJ, Alldredge BK. New pharmacoterapy for Parkinson’s disease. Ann Pharmacother 1997; 31:1205-17.
Pierce MF. Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol 1998; 21:141-51.
Poewe W. Adjuncts to levodopa therapy: dopamine agonists. Neurol. 1998; 50 (Suppl 6): S23-6.
Poewe W. Should treatment of Parkinson’s disease be started with a dopamine agonist? Neurol 1998; 50 (Suppl 6): S19-22.
Goldstein M, Deutch AY. Dopaminergic mechanisms in the pathogenesis of schizophrenia. FASEB J 1992; 6: 2413-21.
Seeman P, Nizkik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990; 4: 2737-44.
Seeman P, Guan HC, VanTol HHM. Dopamine D4-receptors are elevated in schizophrenia. Nature 1993; 365: 441-5.
Reynolds GP, Mason SL. Are striatal dopamine D4 receptors increased in schizophrenia? J Neurochem 1994; 63:1576-7.
Schmauss C, Haroutunian V, Davis KL. Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc Natl Acad Sci USA 1993; 90:8942-6.
Farde L, Wiesel FA, Stone-Elander S, Halldin C, Norstrom AL, Hall H, et al. D2 dopamine receptors in neuroleptic-naïve schizophrenic patients: a positron emission tomography study with [11C]raclopride. Arch Gen Psychiatr 1990; 47:213-19.
Lidow MS, Williams GV, Goldman-Rakic PS. The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 1998; 19:136-40.
Jones SR, Gainetdinov RR, Wightman RM, Caron MG. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 1998; 18: 1979-86.
Hoffman BB, Lefkowitz RJ. Cathecolamines, sympathomimetic drugs, and adrenergic receptor antagonists. En: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW eds. Goodman & Gilman´s The pharmacological basis of therapeutics. 9a. Ed. New York: McGraw Hill; 1996. p. 199-248.
Starr MS. The role of dopamine in epilepsy. Synapse 1996; 22:159-94.