2009, Número 2
<< Anterior Siguiente >>
Bioquimia 2009; 34 (2)
Radiofarmacocinética y captación del 99mTc-cRGD en integrinas avb3 para imágenes de angiogénesis en tumores malignos inducidos en ratones atímicos
López-Durán FA, Pedraza-López M, Arteaga MC, Hernández-Hernández E, García-Becerra R, Ordaz-Rosado D
Idioma: Español
Referencias bibliográficas: 31
Paginas: 61-68
Archivo PDF: 129.60 Kb.
RESUMEN
Los receptores de integrinas a
v b
3 se encuentran en la pared endotelial de los vasos sanguíneos y están sobreexpresados, sobre todo en los nuevos vasos de los tumores malignos. Para visualizar la neoangiogénesis en tumores inducidos con células cancerosas de páncreas, mama y próstata en ratones
atímicos se desarrolló un nuevo radiofármaco de tecnecio-
99m (
99mTc). El péptido cíclico con los aminoácidos: -Arg-Gly-Asp-D-Phe-Lys- se marcó con
99mTc por medio del ligante bifuncional ácido hidracinonicotínico (HYNIC) y del coligante etilendiaminodiacético (EDDA). El
99mTc-EDDA/HYNIC-cyclic-Arg-Gly-Asp-D-Phe-Lys (
99mTc-cRGD) con pureza radioquímica › 95%, se une
in vivo a los receptores de integrinas a
v b
3 con alta especificidad. En los ratones atímicos con cáncer inducido presenta rápida depuración sanguínea y eliminación renal y hay diferencias estadísticamente significativas entre la captación del tumor comparada contra la captación en músculo, en los tres tipos de neoplasias. La relación más alta tumor/músculo fue de 7.2 a las 24 h para el cáncer de mama y se visualizó la neoangiogénesis en este tumor. La alta resolución de la imagen demuestra que en la medicina nuclear el
99mTc-cRGD será de gran valor como un radiofármaco que se une específicamente a receptores de integrinas a
v b
3 y por consiguiente permite obtener imágenes moleculares de tumores malignos con alta resolución.
REFERENCIAS (EN ESTE ARTÍCULO)
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407: 249-57.
Haubner R. av b3-integrin imaging: a new approach to characterize angiogenesis? Eur J Nucl Med Mol Imaging. 2006; 33: 54-63.
Janssen M, Oyen WJ, Massuger LF, Frielink C, Dijkgraaf I, Edwards DS, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm. 2002; 17: 641-6.
Line BR, Mitra A, Nan A, Ghandehari H. Targeting tumor angiogenesis: Comparison of peptide and polymer-peptide conjugates. J Nucl Med. 2005; 40: 1552-60.
Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alphaV gene expression in human melanoma tumourigenicity. J Clin Invest. 1992; 89: 2018-22.
D’Andrea LD, Del Gatto A, Pedone C, Benedetti E. Peptide-based molecules in angiogenesis. Chem Biol Drug Des. 2006; 67: 115-26.
Kok RJ, Schraa AJ, Bos EJ, Moorlag HE, Asgeirsdóttir SA, Everts M, et al. Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. Bioconjug Chem. 2002; 13: 128-35.
Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 integrin antagonists: A new class of tracers for tumor targeting. J Nucl Med. 1999; 40: 1061-71.
Haubner R, Wester HJ. Radiolabed tracers for imaging of tumour angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004; 10: 1439-55.
Yoshimoto M, Ogawa K, Washiyama K, Shikano N, Mori H, Amano R, et al. Alpha(v)beta(3) Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer. 2008; 123: 709-15.
Li ZB, Chen K, Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging. 2008; 35: 1100-8.
Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008; 49: 830-6.
Knight LC. In handbook of radiopharmaceuticals; Welch MJ, and Redvanly CS, eds. England: John Wiley & Sons; 2003. p. 643-84.
Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. 64Cu-Labeled tetrameric and octameric RGD peptides for small-animal PET of tumor av b3 integrin expression. J Nucl Med. 2007; 48: 1162-71
Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated av b3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med. 2005; 2: 29.
Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin av b3 expression with 18F-FRGD2. J Nucl Med. 2006; 47: 113-21.
Li ZB, Wu Z, Chen K, Ryu EK, Chen X. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med. 2008; 49: 453-61.
Glaser M, Morrison M, Solbakken M, Arukwe J, Karlsen H, Wiggen U, et al. Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. Bioconjug Chem. 2008; 19: 951-7.
Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al. MicroPET of tumor integrin alpha-beta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med. 2007; 48: 1536-44.
Liu S, Edwards DS. 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev. 1999; 99: 2235-68.
Bock M, Bruchertseifer F, Haubner R, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M, et al. Tc-99m-, Re-188- and Y-90-labeled av b3 antagonists: promising tracer for tumor-induced angiogenesis. J Nucl Med. 2000; 41: 41P.
Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ. In vitro and in vivo evaluation of a technetium-99m-Labeled cyclic RGD peptide as a specific marker of av b3 integrin for tumor imaging. Bioconjugate Chem. 2002; 13: 561-70.
Liu S, Hsieh WY, Kim YS, Mohammed SI. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjugate Chem. 2005; 16: 1580-8.
Decristoforo C, Faintuch-Linkowski B, Rey A, von Guggenberg E, Rupprich M, Hernandez-Gonzales I, et al. [99mTc]HYNIC-RGD for imagin integrin av b3 expression. Nucl Med Biol. 2006; 33: 945-52.
Ferro-Flores G, Arteaga de Murphy C, Rodríguez-Cortés J, Pedraza-López M, Ramírez-Iglesias T. Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-Bombesin for imaging of gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun. 2006; 27: 371-6.
Larrea F, García-Becerra R, Lemus AE, García GA, Pérez-Palacios G, Jackson KJ, et al. A-ring reduced metabolites of 19-nor synthetic progestins as subtype selective agonists for ERa. Endocrinology. 2001; 142: 3791-9.
Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005; 46: 1023-7.
Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, et al. Related imaging of metastatic melanoma utilizing a technetium-99m labelled RGD-containing synthetic pepetide. Eur J Nucl Med. 1998; 25: 1383-9.
Noiri E, Goligorsky MS, Wang GJ, Wang J, Cabahug CJ, Sharma S, et al. Biodistribution and clearance of 99mTc-labeled Arg-Gly-Asp(RGD) peptide in rats with ischemic acute renal failure. J Am Soc Nephrol. 1996; 7: 2682-8.
Fani M, Psimadas D, Zikos C, Xanthopoulos S, Loudos GK, Bouziotis P, et al. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res. 2006; 26: 431-4.
Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, et al. Integrin av b3-Targeted Imaging of Lung Cancer. Neoplasia. 2005; 7: 271-9.