2004, Número 2
<< Anterior Siguiente >>
Rev Biomed 2004; 15 (2)
Los receptores de los linfocitos de la inmunidad innata
Cocom-Góngora PC, Mut-Martín MC, García-Miss MR
Idioma: Español
Referencias bibliográficas: 64
Paginas: 113-122
Archivo PDF: 47.68 Kb.
RESUMEN
Los linfocitos asesinos naturales (NK) son células de la respuesta inmune innata y la identificación de sus receptores ha contribuido al entendimiento de su reactividad y especificidad. Estos linfocitos se activan cuando reconocen células ajenas o células propias alteradas, lo cual realizan a través de sus receptores específicos, llamados receptores activadores, como son el CD16, CD2, CD28 y CD161. De este modo, las células alteradas en la expresión de moléculas del complejo principal de histocompatibilidad clase I (MHC I), llegan a ser susceptibles al ataque mediado por células NK al ligarse sus receptores activadores. La actividad citotóxica de estas células está regulada por sus receptores inhibitorios, los cuales reconocen moléculas del complejo principal de histocompatibilidad clase I y, con esto, previenen la actividad lítica contra las células normales. Los receptores inhibitorios más conocidos son los KIR, el Ly49, el CD94/NKG2 y el KLRE1. La mayoría de estos receptores activadores e inhibitorios pertenecen a la superfamilia de la Ig y de la lectina tipo C. En este artículo se revisan las características de varios receptores de los linfocitos NK y se discute su heterogeneidad estructural y su papel en el control de la respuesta inmune.
REFERENCIAS (EN ESTE ARTÍCULO)
Parslow T, Bainton D. Inmunidad innata. En: Stites C, Abba T, Parslow T, editores. Inmunología básica y clínica. México: Manual Moderno; 1999; p. 21-40.
Erickson K., Medina E, Hubbard N. Micronutrients and innate immunity. J Infect Dis 2000; 182(suppl 1):s5-10.
Medzhitov R, Janeway C. Innate immunity. N Eng J Med 2000; 343:338-43.
Borregaard N., Elsbach P., Ganz T., Garred P, Svejgaard A. Innate immunity: from plants to humans. Immunol Today 2000; 21:68-70.
Peter Parham. The unsung heroes. Nature 2003; 423:20.
Long E, Wagtmann N. Natural killer cell receptors. Curr Opin Immunol 1997; 9:344-50.
Colonna M, Samaridis J, Cella M, Angman, Allen R, O´Callaghan C. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 1998; 160: 3096-100.
López-Botet M, Bellón T. Natural killer cell activation and inhibition by receptors for MHC class I. Curr Opin Immunol 1999; 11:301-7.
Mandelboim O, Malik P, Davis D, Jo C, Boyson J, Strominger J. Human CD16 as lysis receptor mediating direc natural killer cell cytotoxicity. Proc Natl Acad Sci USA 1999; 96:5640-4.
Lanier L. NK cell receptors. Annu Rev Immunol 1998; 16:359-93.
Lanier LL, Corliss BC, Wu J, Leong C, Phillips J. Immunoreceptor DAP-12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 1998; 391:703-7.
Lanier LL. Natural killer cell receptor signalling. Curr Opin Immunol 2003; 15:308-14.
Seaman W.E. Natural killer and natural killer T cells. Arthritis Rheum 2000; 43:1204-17.
Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T. Natural killer (NK) cell defiency associated with an epitopedeficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 1996; 103:408-13.
Robertson M, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990; 12:2421-38.
Azuma M, Cayabyab M, Buck D, Phillips JH, Lanier LL. Involvement of CD28 in mayor histocompatibility complexunrestricted cytotoxicity mediated by human NK leukaemia cell line. J Immunol 1992; 149:1115-23.
Nandi D, Gross JA, Allison JP. CD28-mediated costimulation is necessary for optimal proliferation of murine NK cells. J Immunol 1994; 152:3361-9.
Hunter CA, Ellis-Neyer L, Gabriel KE, Kennedy MK, Grabstein KH. et. al. The role of the CD28/B7 interaction in regulation of NK cell responses during infection with Toxoplasma gondii. J Immunol 1997; 158:2285-93.
Yeh KY, Pulaski BA, Woods ML, McAdam AJ, Gaspari AA, Frelinger JG, et. al. B7-1 enhances natural killer cellmediated cytotoxicity and inhibits tumor growth of a poorly immunogenic murine carcinoma. Cell Immunol 1995; 165:217-74.
Brittenden J., Heys S., Ross J, Eremin O. Natural killer and cancer. Cancer 1996; 77:1226-43.
Moretta A, Bottino C, Vitale M, Pende D, Biassoni R and Mingari M. Receptors for HLA Class-I molecules in human natural killer cells. Annu Rev Immunol 1996; 14:619-48.
Backman-Peterson E, Miller JR, Hollyoake M, Aguado B, Butcher GW. Molecular characterization of the novel rat NK receptor 1C7. Eur J Immunol 2003; 33:342-51.
Brown M. Boles K, Van Der Merwe P, Kumar V, Mathew P, Barclay N. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med 1998; 188:2083-90.
Colonna M. Unmasking the killer´s accomplice. Nature 1998; 391:642-3.
Kronenberg M, Brossay L, Kurepa Z, Forman J. Conserved lipid peptide presentacion functions of nonclassical class I molecules. Immunol Today 1999; 11: 477-534.
Raulet D. Recognition events that inhibit and activate natural killer cells. Curr Opin Immunol 1996; 8:372-7.
Lanier L. Natural killer cell receptors and MHC class I interactions. Curr Opin Immunol 1997; 9:126-31.
Gumperz J, Parham P. The enigma of the natural killer cell. Nature 1995; 378:245-8.
López-Botet M. Células citotóxicas naturales. Investigación y Ciencia 1995; 225:30-1.
Raulet DH. Developmente and tolerance of natural killer cells. Curr Opin Immunol 1999; 11:129-34.
Su R, Kung S, Gariépy J, Barber B, Miller R. NK cells can recognize different forms of class I MHC. J Immunol 1998; 161:755-66.
Nakamura M, Linnemeyer P, Niemi E, Llewellyn M, Ortaldo J, Ryan J. Mouse LY-49D Recognizes H-2Dd and activates Natural killer cell cytotoxicity. J Exp Med 1999; 189:493-500.
Rajagopalan S, Long E. A human histocompatibility leukocyte antigen (HLA) G-specific receptor expressed on all natural killer cells. J Exp Med 1999; 189:1093-9.
Sun P. Structure and function of Natural-killer cell receptors. Immunol Res 2003; 27:539-48.
Parham P. Events in the adaption of natural killer cell receptors to MHC class I polymorphisms. Immunol Res 1997; 148:190-4.
Stewart CA, Van Bergen J, Trowsdale J. Different and Divergent regulation of the KIR2DL4 and KIR3DL1 promoters. J Immunol 2003; 170:6073-81.
Davis D, Chiu I, Fassett M, Cohen G, Mandelboim O. The human natural killer cell immune synapse. Proc Natl Acad Sci USA 1999; 21:15062-7.
Ponte M, Cantón C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C, et al Inhibitory receptors sensing HLA-GI molecules in pregnancy: Decidua-associated natura killer cells express LIR-1 and CD94/NKG2 and acquiere p49, an HLA GI specific receptor. Proc Natl Acad Sci USA 1999; 96:5674-9.
Valés-Gómez M., Reyburn H., Erskine R, Strominger J. Differential binding to HLA-C of p50 activating and p58 inhibitory natural killer cell receptor. Proc Natl Acad Sci USA 1998; 95:14326-31.
Colonna M. Inmunoglobulin superfamily inhibitory receptors: from natural killer cells o antigen-presenting cells. Res Immunol 1997; 148:169-71.
Bruhns P, Marchetti P, Fridman WH, Vivier E, Daeron M. Differential roles of N- and C-terminal immunoreceptor tyrosine-based inhibition motifs during inhibition of cell activation by killer cell inhibitory receptors. J Immunol 1999; 162:3168-75.
Faure M, Barber DF, Takahashi SM, Jin T, Long EO. Spontaneous clustering and tyrosine phosphorylation of NK cell inhibitory receptor induced by ligand binding. J Immunol 2003; 170:6107-14.
Tormo J, Natarajan K, Margulies D, Mariuzza R. Crystal structure of a lectin-like natural killer cells receptor bound to its MHC class I ligand. Nature 1999; 402:623-31.
Brown M, Scalzo A, Matsumoto K, Wayne Y. The natural killer gene complex: a genetic basis for understanding natural killer cell function and innate immunity. Immunol Rev 1997; 155:53-65.
Lian R, Li Y, Kubota S, Manger D, Takei F. Recognition of class I MHC by NK receptor Ly49C: identification of critical residues. J Immunol 1999; 162: 7271-6.
Kase A, Johansson M, Olsson-Alheim M., Karre K, Hoglund P. External and internal calibration of the MHC class I specific receptor Ly49A on murine natural killer cells. J Immunol 1998; 161:6133-8.
George T, Mason L, Ortaldo J, Vinay K, Bennett M. Positive recognition of MHC class I molecules by the Ly49D receptor of murine NK cells. J Immunol 1999; 162:2035-43.
Idris A, Smith H, Mason L, Ortaldo J, Scalzo A, Yokoyama W. The natural killer gene complex genetic locus Chock encodes Ly-49D, a target recognition receptor that activates natural killing. Proc Natl Acad Sci USA 1999; 96:6330-5.
Renedo M, Arce I, Montgomery K, Roda-Navarro P, Lee E, Kucherlapati R, Fernández-Ruiz E. A sequence-ready physical map of the region containing the human natural killer gene complex on chromosome 12p12.3-p13.2. Genomics 2000; 65:129-36.
Moretta L, Ferlazzo G, Mingari MC, Melioli G, Moretta A. Human natural killer cell function and their interactions with dendritic cells. Vaccine 2003; 21(Suppl 2):S38-42.
Chiesa MD, Vitale M, Carlomagno S, Ferlazzo G, Moretta L, Moretta A. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Iglike receptors. Eur J Immunol 2003; 33:1657-66.
Westgaard IH, Dissen E, Torgersen KM, Lazetic S, Lanier LL, Phillips JH, FOSUM S. The lectin-like receptor KLRE1 inhibits Natural Killer cell cytotoxicity. J Exp Med 2003; 197:1551-61.
Esplugues E, Sancho D, Vega-Ramos J, Martinez C, Syrbe U, Hamann A, et. al. Enhanced antitumor immunity in mice deficient in CD69. J Exp Med 2003; 197:1093-106.
Phillips JH, Takeshita T, Sugamura K, Lanier LL. Activation of natural killer cells via the p75 interleukin receptor. J Exp Med 1989; 170:291-6.
Wilcox RA, Tamada K, Strome Se, Chen L. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol 2002;199:4230-6.
Deaglio S, Zubiaur M, Gregorini A, Boltarel F, Ausiello CM, Dianzani U, et al. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood 2002; 99: 2490-8.
Sconocchia G, Titus JA, Mazzoni A, Visintin A, Pericle F, Hicks SW, et al. CD38 triggers cytotoxic responses in activated human natural killer cells. Blood 1999; 94:3864-71.
Matsumoto G, Nghiem MP, Nozaky N, Schmits R, Penninger JM. Cooperation between CD44 and LFA-1/Cd11a adhesion receptors in lymphokine activated killer cell cytotoxicity. J Immunol 1998; 160:5781-9.
Ikawa T, Kawamoto H. Fujimoto S, Katsura Y. Commitment of common T /Natural Killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med 1999; 190:1617-26.
Carlyle JR, Michie AM, Furlonger C, Nakano T, Lenardo MJ, Paige CJ, et. al. Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J Exp Med 1997; 186:173-82.
Rabinowich H, Sedlmayr P, Herberman RB, Whiteside TL. Response of human NK cells to Il-6 alterations of the cell surface phenotype, adhesion to fibronectin and laminin, and tumor necrosis factor-alpha/beta secretion. J Immunol 1993; 150:4844-55.
Barber DF, Long EO. Coexpression of CD58 y CD48 with intercellular adhesion molecule on target cells enhances adhesion of resting NK cells. J Immunol 2003; 170:294-9.
Brown MH, Boles K, Van Der Merwe PA, Kumar V, Mathew PA, Barclay AN, et. al. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein is a ligand for CD48. J Exp Med 1998; 188:2083-90.
Lindberg F, Bullard D, Caver T, Gresham H, Beaudet AL, Brown EJ, et. al. Decreased resistance to bacterial infection and granulocyte defects in IAP-Deficient mice. Science 1996; 274:795-8.