2008, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2008; 144 (5)
Análisis molecular de los repetidos CAG en pacientes mexicanos con ataxia espinocerebelosa tipo 2.
Magaña JJ, Vergara MD, Sierra-Martínez M, García-Jiménez E, Rodríguez-Antonio F, Gómez MR, Valdés-Flores M, Cisnerosa B
Idioma: Español
Referencias bibliográficas: 30
Paginas: 413-418
Archivo PDF: 131.51 Kb.
RESUMEN
Antecedentes: La ataxia espinocerebelosa tipo 2 es causada por la expansión del repetido CAG presente en el exón 1 del gen de la ataxina-2, lo cual origina la incorporación de un segmento de poliglutaminas en la proteína mutante.
Métodos: Mediante reacción en cadena de la polimerasa y electroforesis capilar se determinó el número de repetidos CAG del gen de la ataxina-2 en 66 individuos pertenecientes a tres familias mexicanas diagnosticadas clínicamente con ataxia espinocerebelosa tipo 2, y en 400 individuos de una muestra de población mestiza mexicana.
Resultados: Se identificó la expansión del repetido CAG en 11 sujetos con sintomatología de ataxia espinocerebelosa tipo 2 y en cuatro individuos asintomáticos, lo que confirmó el diagnóstico en dos de las tres familias analizadas. Se determinó que los pacientes con mayor número de repetidos desarrollaron la sintomatología de la enfermedad a una edad más temprana, fenómeno conocido como “anticipación”. Los alelos silvestres presentaron un rango entre 13 y 30 repetidos CAG, siendo el alelo de 22 repetidos el más frecuente, mientras que los alelos mutados mostraron un rango de 36 a 54 repetidos.
Conclusiones: La identificación de la expansión del repetido CAG del gen de la ataxina-2 confirmó el diagnóstico clínico de ataxia espinocerebelosa tipo 2.
REFERENCIAS (EN ESTE ARTÍCULO)
Saleem Q, Choudhry S, Mukerji M, Bashyam L, Padma MV, Chakravarthy A, et al. Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: High frequency of SCA2 and evidence for a common founder mutation. Hum Genet 2000;106:179-187.
Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the drew family of Walworth. Brain 1982;105:1-28.
Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005;4:2-6.
Brusse E, Maat-Kievit JA, van Swieten JC. Diagnosis and management of early- and late-onset cerebellar ataxia. Clin Genet 2007;71:12-24.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000;26:191-194.
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An unstranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999;21:379-384.
Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: From genotype to phenotype and physiopathology. Eur J Hum Genet 2000;8:4-18.
Tan EK, Ashisawa T. Genetic testing in spinocerebellar ataxias: Defining a clinical role. Arch Neurol 2001;58:191-195.
Sinha KK, Worth PF, Jha DK, Sinha S, Stinton VJ, Davis MB, et al. Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in Eastern India. J Neurol Neurosurg Psychiatry 2004;75:448-452.
Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, et al. Molecular genetics of hereditary spinocerebellar ataxia: Mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 255 Italian families. Arch Neurol 2004;61:727-733.
Sahba S, Nechiporuk A, Figueroa KP, Nechiporuk T, Pulst SM. Genomic structure of the human gene for spinocerebellar ataxia 2 (SCA2) on chromosome 12q24.1. Genomics 1998;47:359-364.
Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buchmann J, Hintermann E, et al. Insulin receptor and lipid metabolism pathology in ataxin- 2 knock-out mice. Hum Mol Genet 2008;17:1465-1481.
Fernández M, McClain ME, Martínez RA, Snow K, Lipe H, Ravits J, et al. Late-onset SCA2:33 CAG repeats are sufficient to cause disease. Neurology 2000;55:569-572.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269-276.
Pulst SM. Spinocerebellar ataxia type 2. Gene clinics: Clinical genetic information resource [data base online]. University of Washington, Seattle. Available at http://www.geneclinics.org/profiles/sca2
Dorschner MO, Barden D, Stephens K. Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J Mol Diagn 2002;4:108-113.
Krishna N, Mohan S, Yashavantha BS, Rammurthy A, Kiran Kumar HB, Mittal U, et al. SCA1, SCA2 & SCA3/MJD mutations in ataxia syndromes in Southern India. Indian J Med Res 2007;126:465-470.
Andrés AM, Lao O, Soldevila M, Calafell F, Bertranpetit J. Dynamics of CAG repeat loci revealed by the analysis of their variability. Hum Mut 2002;21:61-70.
Alonso E, Martínez-Ruano L, De Biase I, Mader C, Ochoa A, Yescas P, et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov Disord 2007;22:1050-1053.
Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning; A laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.
Timchenko LT, Caskey CT. Triplet repeat disorders: discussion of molecular mechanisms. Cell Mol Life Sci 1999;55:1432-1447.
Brahmachari SK, Meera G, Sarkar PS, Balagurumoorthy P, Tripathi J, Raghavan S, et al. Simple repetitive sequences in the genome: Structure and functional significance. Electrophoresis 1995;16:1705-1714.
Mc Murray CT. Mechanism of DNA expansion. Chromosoma 1995;104:2-13.
Cancel G, Durr A, Didierjean O, Imbert G, Burk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: A study of 32 families. Hum Mol Genet 1997;6:709-715.
Gesschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 1997;60:842-850.
Sasaki H, Yabe I, Tashiro K. The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 2003;100:198-205.
Giunti P, Sabbadini G, Sweeney MG, Davis MB, Veneziano L, Mantuano E, et al. The role of SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families: Frecuency, clinical and genetics correlates. Brain 1998;121:459-467.
Telenius H, Almqvist E, Kremer B, Spence N, Squitieri F, Nichol K, et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Hum Mol Genet 1995;4:189-195.
Ueno S, Kondoh K, Kotani Y, Komure O, Kuno S, Kawai J, et al. Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA). Hum Mol Genet 1995;4:663-666.
Nance MA. Genetic testing in inherited ataxias. Semin Pediatr Neurol 2003;10: 223-231.