2008, Número 4
<< Anterior Siguiente >>
Perinatol Reprod Hum 2008; 22 (4)
Efecto de los donadores de óxido nítrico en la inducción de la maduración cervical
Arteaga-Troncoso G, López-Hurtado M, Guerra-Infante F
Idioma: Español
Referencias bibliográficas: 96
Paginas: 303-314
Archivo PDF: 357.86 Kb.
RESUMEN
Los nitratos orgánicos o ésteres del ácido nítrico, tales como el dinitrato de isosorbide, trinitrato de glicerilo y nitroprusiato de sodio, son una nueva clase de compuestos utilizados para inducir la maduración cervical. Su eficacia se basa en la capacidad que tienen para ser bioactivados en el sistema de óxido nítrico para relajar al músculo liso vascular. Los experimentos químicos han implicado tanto a las riboflavinas como a los tioles en la activación de los nitratos orgánicos. Aunque existe una gran cantidad de estudios biológicos que sugieren que el óxido nítrico puede formarse a partir de los nitratos orgánicos en el medio ambiente intracelular, el mecanismo químico de las células endoteliales de cuello uterino, mediante el cual ocurre, aún no se ha establecido. En este artículo se revisan las posibles interacciones entre los nitratos orgánicos, flavinas y tioles, como un medio para determinar el papel que pueden desempeñar estas especies bioquímicas en la producción de óxido nítrico y la maduración cervical.
REFERENCIAS (EN ESTE ARTÍCULO)
Furchgott RF, Zawadzki JV. The obligatory role of endotelial cells in the relaxation of arterial smooth muscle by acethylcholine. Nature 1980; 288: 373-6.
Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990; 30: 535-60.
Craven PA, De Rubertis FR. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide and related activators by heme and hemeproteins: Evidence for involvement of the paramagnetic nitrosyl heme complex in enzyme activation. J Biol Chem 1978; 253: 8433-43.
Rapaport RM, Draznin MB, Murad F. Endothelium-dependent vasodilator- and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation. Trans Ass Am Physicians 1983; 96: 19-30.
Moncada S, Higgs EA. Endogenous nitric oxide physiology, pathology and clinical relevance. Eur J Clin Invest 1991; 21: 361-74.
Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of Snitrosothiols as active intermediates. J Pharmacol Exp Ther 1981; 218: 739-49.
Ignarro LJ. Heme-dependent activation of soluble guanylate cyclase by nitric oxide: Regulation of enzyme activity by porphyrins and metalloporphyrins. Semin Hematol 1989; 26: 63-76.
Schmidt HHHW, Lohman SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1993; 1178: 153-75.
Murad F. Regulation of cytosolic guanylate cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv Pharmacol 1994; 26: 19-33.
Chung SJ, Fung HL. Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary smooth muscle cells. J Pharmacol Exp Ther 1990; 253: 614-9.
Feelisch M, Kelm M. Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun 1991; 180: 286-93.
Michel T, Smith TW. Nitric oxide synthases and cardiovascular signaling. Am J Cardiol 1993; 72: 33C-8C.
Arteaga-Troncoso G, Villegas-Alvarado A, Belmont-Gomez A, Martinez-Herrera FJ, Villagarana-Zesati R, Guerra-Infante F. Intracervical application of the nitric oxide donor isosorbide dinitrate for induction of cervical ripening: a randomized controlled trial to determine clinical efficacy and safety prior to first trimester surgical evacuation of retained products of conception. BJOG 2005; 112: 1615-9.
Danforth DN. The morphology of the human cervix. Clin Obstet Gynecol 1983; 26: 7-13.
Leppert PC. Anatomy and physiology of cervical ripening. Clin Obstet Gynecol 1995; 38: 267-9.
Kelly RW. Inflammatory mediators and cervical ripening. J Reprod Immunol 2002; 57: 217-24.
Minamoto T, Arai K, Hirakawa S, Nagai Y. Immunohistochemical studies on collagen types in the uterine cervix in pregnant and nonpregnant states. Am J Obstet Gynecol 1987; 156: 138-44.
Chwalisz K, Garfield RE. Role of nitric oxide in the uterus and cervix: implications for the management of labor. J Perinat Med 1998; 26: 448-57.
Leppert PC. Proliferation and apoptosis of fibroblasts and smooth muscle cells in rat uterine cervix throughout gestation and the effect of the antiprogesterone onapristone. Am J Obstet Gynecol 1998; 178: 713-25.
Maul H, Longo M, Saade GR, Garfield RE. Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr Pharm Des 2003; 9: 359-80.
Sennström MB, Brauner A, Byström B, Malmström A, Ekman G. Matrix metalloproteinase-8 correlates with the cervical ripening process in humans. Acta Obstet Gynecol Scand 2003; 82: 904-11.
Winkler M, Rath W. Changes in the cervical extracellular matrix during pregnancy and parturition. J Perinat Med 1999; 27: 45-60.
Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, Norman JE. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod 2003; 9: 41-5.
Sennström MB, Ekman G, Westergren-Thorsson G, Malmström A, Byström B, Endresen U, et al. Human cervical ripening, an inflammatory process mediated by cytokines. Mol Hum Reprod 2000; 6: 375-81.
Sakamoto Y, Moran P, Searle RF, Bulmer JN, Robson SC. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin Exp Immunol 2004; 138: 151-7.
Osmers RG, Adelmann-Grill BC, Rath W, Stuhlsatz HW, Tschesche H, Kuhn W. Biochemical events in cervical ripening dilatation during pregnancy and parturition. J Obstet Gynecol 1995; 21: 185-94.
Osmers RG, Blaser J, Kuhn W, Tschesche H. Interleukin-8 synthesis and the onset of labor. Obstet Gynecol 1995; 86: 223-9.
Sennström MB, Brauner A, Lu Y, Granström LM, Malmström AL, Ekman GE. Interleukin-8 is a mediator of the final cervical ripening in humans. Eur J Obstet Gynecol Reprod Biol 1997; 74: 89-92.
Aronsson A, Ulfgren AK Stabi B, Stavreus-Evers A, Gemzell-Danielsson K. The effect of orally and vaginally administered misoprostol on inflammatory mediators and cervical ripening during early pregnancy. Contraception 2005; 72: 33-9.
Garcia-Velasco JA, Arici A. Chemokines and human reproduction. Fertil Steril 1999; 71: 983-93.
Chwalisz K, Benson M, Scholz P, Daum J, Beier HM, Hegele-Hartung C. Cervical ripening with the cytokines interleukin 8, interleukin 1 beta and tumour necrosis factor alpha in guinea-pigs. Hum Reprod 1994; 9: 2173-81.
Garfield RE, Saade G, Buhimschi C, Buhimschi I, Shi L, Shi SQ, Chwalisz, K. Control and assessment of the uterus and cervix during pregnancy and labour. Hum Reprod Update 1998; 4: 673-95.
Neilson JP. Mifepristone for induction of labour. Cochrane Database of Systematic Reviews; 2004, p. 4.
Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci USA 2003; 100: 9518-23.
Madsen G, Zakar T, Ku CY, Sanborn BM, Smith R, Mesiano S. Prostaglandins differentially modulate progesterone receptor- A and -B expression in human myometrial cells: evidence for prostaglandininduced functional progesterone withdrawal. J Clin Endocrinol Metab 2004; 89: 1010-3.
Stjernholm-Vladic Y, Stygar D, Månsson C, Masironi B, Åkerberg S, Wang H, Ekman- Ördeberg G, Sahlin L. Factors involved in the inflammatory events of cervical ripening in humans. Reprod Biol Endocrinol 2004; 2: 74.
Denison FC, Calder AA, Kelly RW. The action of prostaglandin E2 on the human cervix: stimulation of interleukin 8 and inhibition of secretory leukocyte protease inhibitor. Am J Obstet Gynecol 1999; 180: 614-20.
Sallenave JM, Si Tahar M, Cox G, Chignard M, Gauldie J. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. J Leukoc Biol 1997; 61: 695-702.
Sugano T, Narahara H, Nasu K, Arima K, Fujisawa K, Miyakawa I. Effects of plateletactivating factor on cytokine production by human uterine cervical fibroblasts. Mol Hum Reprod 2001; 7: 475-81.
Collins JJ, Usip S, McCarson KE, Papka RE. Sensory nerves and neuropeptides in uterine cervical ripening. Peptides 2002; 23: 167-83.
Nakatsuka M, Habara T, Kamada Y, Tada K, Kudo T. Elevation of total nitrite and nitrate concentration in vaginal secretions as a predictor of premature delivery. Am J Obstet Gynecol 2000; 182: 644-5.
Brune B, von Knethen A, Sandau KB. Nitric oxide and its role in apoptosis. Eur J Pharmacol 1998; 351: 261-72.
Yoshida M, Sagawa N, Itoh H, Yura S, Korita D, Kakui K, Hirota N, Sato T, Ito A, Fujii S. Nitric oxide increases matrix metalloproteinase-1 production in human uterine cervical fibroblast cells. Mol Hum Reprod 2001; 7: 979-85.
Biondi C, Pavan B, Lunghi L, Fiorini S, Vesce F. The role and modulation of the oxidative balance in pregnancy. Curr Pharm Des 2005; 11: 2075-89.
Chwalisz K, Garfield RE. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide. Ann NY Acad Sci 1997; 828: 238-53.
Buhimschi I, Ali M, Jain V, Chwalisz K, Garfield RE. Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy and labour. Hum Reprod 1996; 11: 1755-66.
Leppert PC, Kokenyesi R, Klemenich CA, Fisher J. Further evidence of a decorincollagen interaction in the disruption of cervical collagen fibers during rat gestation. Am J Obstet Gynecol 2000; 182: 805-11.
Ekerhövd E, Weijdegard B, Brännström M, Mattsby-Baltzer I, Norström A. Nitric oxide induced cervical ripening in the human: Involvement of cyclic guanosine monophosphate, prostaglandin F(2 alpha), and prostaglandin E(2). Am J Obstet Gynecol 2002; 186: 745-50.
Maul H, Longo M, Saade GR, Garfield RE. The physiology of uterine contractions. Clin Perinatol 2003; 30: 665-76.
Ledingham MA, Denison FC, Riley SC, Norman JE. Matrix metalloproteinases-2 and -9 and their inhibitors are produced by the human uterine cervix but their secretion is not regulated by nitric oxide donors. Hum Reprod 1999; 14: 2089-96.
Tschugguel W, Schneeberger C, Lass H, Stonek F, Zaghlula MB, Czerwenka K, et al. Human cervical ripening is associated with an increase in cervical inducible nitric oxide synthase expression. Biol Reprod 1999; 60: 1367-72.
Ledingham MA, Thomson AJ, Young A, Macara, LM, Greer IA, Norman JE. Changes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol Hum Reprod 2000; 6: 1041-8.
Bao S, Rai J, Schreiber J. Brain nitric oxide synthase expression is enhanced in the human cervix in labor. J Soc Gynecol Investig 2001; 8: 158-64.
Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-6.
Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expresed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351: 714-8.
Klatt P, Heinzel B, John M, Kastner M, Bohme E, Mayer B. Ca2+/calmodulin-dependent cytochrome C reductase activity of brain nitric oxide synthase. J Biol Chem 1992; 267: 11374-8.
Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994; 78: 915-8.
Marsden PA, Heng HHQ, Scherer SW. Structure and chromosomal localization of the human constitutive endothelial NO synthase. J Biol Chem 1993; 268: 17478-88.
Kenneth KW. Regulation of endothelial nitric oxide synthase activity and gene expression. In: Chiueh CC, Hong JS, Kee LS (eds.). Nitric Oxide. Novel actions, deleterious effects, and clinical potential. Annals New York Acad Sc 962; 2002, p. 122-30,
Ding Y, Vaziri ND. Calcium channel blockade enhances nitric oxide synthase expression by cultured endothelial cells. Hypertension 1998; 32: 718-23.
Rodríguez-Mañas L, Sánchez-Rodríguez C, Vallejo S, El-Assar M, Peiró C, Azcutia V, Matesanz N, Sánchez-Ferrer CF, Nevado J. Pro-inflammatory effects of early nonenzymatic glycated proteins in human mesothelial cells vary with cell donor’s age. British J Pharmacology 2006; 149: 979-87.
Ohashi Y, kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, et al. Hypotension and reduced nitric oxide-elicted vasorelaxation in transgenic mice over expressing endothelial nitric oxide synthase. J Clin Invest 1998; 102: 2061-71.
Bader M. Transgenic animal models for the functional analysis of vasoactive peptides. Braz J Med Biol Res 1998; 31: 1171-83.
Haperen RV, Cheng C, Mess BM, Van deel E, Waard M, Van Damme LCA, et al. Functional expression of endothelial nitric oxide synthase fused to green fluorescent protein in transgenic mice. Am J Pathol 2003; 163: 1677-86.
Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 239-42.
Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1996; 93: 13176-81.
Albertech E, Stegeman CA, Herringa P, Henning RH, Van Goor H. Protective role of endothelial nitric oxide synthase. J Pathol 2003; 199: 8-17.
Katzung BG Chatterjee K. Vasodilation and the treatment of angina pectoris. In: Katzung BG (ed.). Basic and Clinical Pharmacology. Appleton and Lange, Norwalk, CT; 1989, p. 1017.
Arnold WP, Mittal CK, Katsuki, S Murad F. Nitric oxide activates guanylate ciclase and increases 3´,5´-monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74: 3203- 7.
Ignarro LJ, Barry BK, Gruetter DY, Ohlstein EH, Gruetter CA, Kadowitz PJ, Baricos WH. Selective alterations in responsiveness of guanylate cyclase to activation by nitroso compounds during enzyme purification. Biochim Biophys Acta 1981; 673: 394-407.
Kurz MA, Lamping KG, Bates JN, Eastham CL, Marcus ML, Harrison DG. Mechanisms responsible for the heterogeneous coronary microvascular response to nitroglycerin. Circ Res 1991; 68: 847-55.
Servent D, Delaforge M, Ducrocq C, Mansuy D, Lenfant M. Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: Involvement of cytochrome P-450. Biochem Biophys Res Commun 1989; 163: 1210-6.
Simon WC, Anderson DJ, Bennett BM. Inhibition of the pharmacological actions of gly-ceryl trinitrate after the electroporetic delivery of a glutathione S-transferase inhibitor. J Pharmacol Exp Ther 1996; 279: 1535-40.
Schroder H. Cytochrome P-450 mediates bioactivation of organic nitrates. J Pharmacol Exp Ther 1992; 262: 298-302.
Nigam R, Whiting T, Bennett BM. Effect of inhibitors of glutathione S-transferase on glyceryl trinitrate activity in isolated rat aorta. Can J Physiol Pharmacol 1993; 71: 179-84.
Nigam R, Anderson DJ, Lee SF, Bennett BM. Isoform-specific biotransformation of glyceryl trinitrate by rat aortic glutathione S-transferases. J Pharmacol Exp Ther 1996; 279: 1527-34.
McGuire JJ, Anderson DJ, Bennett BM. Inhibition of the biotransformation and pharmacological actions of glyceryl trinitrate by the flavoprotein inhibitor, diphenyleneiodonium sulfate. J Pharmacol Exp Ther 1994; 271: 708-14.
Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans 2000; 28: 283-96.
Allen AD. Hydrolysis and alcoholysis of some organic nitrites. J Chem Soc 1952: 1193-206.
Baker JW, Easty DM. Hydrolytic decomposition of esters of nitric acid. J Chem Soc (London) 1952: 1968-1974.
Seth P, Fung HL. Biochemical characterization of a membrane-bound enzyme responsible for generating nitric oxide from nitroglycerin in vascular smooth muscle cells. Biochem Pharmacol 1993; 46: 1481-6.
Wong S-YP, Fukuto MJ. Reaction of organic nitrate esters and s-nitrosothiols with reduced flavins: a possible mechanism of bioactivation. Drug Metabol D 1999; 27: 502-9.
Thomson, et al. 1998 (faltan datos de la referencia)
Nicoll AE, Mackenzie F, Greer I, Norman JE. Vaginal application of the nitric oxide donor isosorbide mononitrate for prein duction cervical ripening: a randomized controlled trial to determine effects on maternal and fetal hemodynamics. Am J Obstet Gynecol 2001; 184: 958-64.
Li C, Chan C, Ho P. A comparison of isosorbide mononitrate and misoprostol cervical ripening before suction evacuation. Obstet Gynecol 2003; 102: 583-8.
Li C, Chan C, Ho P. A study of the efficacy of cervical ripening with nitric oxide donor versus placebo for cervical priming before second-trimester termination of pregnancy. Contraception 2003; 68: 269-72.
Eppel W, Facchinetti F, Schleussner E, Piccinini F, Pizzi C, Gruber DM, et al. Second trimester abortion using isosorbide mononitrate in addition to gemeprost compared with gemeprost alone: a double-blind randomized, placebo-controlled multicenter trial. Am J Obstet Gynecol 2005; 192: 856-61.
Facchinetti F, Piccinini F, Volpe A. Chemical ripening of the cervix with intracervical application of sodium nitroprusside: a randomized controlled trial. Hum Reprod 2000; 15: 2224-7.
Chan CC, Tang OS, Ng EH, Li CF, Ho PC. Intracervical sodium nitroprusside versus vaginal misoprostol in first trimester surgical termination of pregnancy: a randomized double-blinded controlled trial. Hum Reprod 2005; 20: 829-33.
Chanrachakul B, Herabutya Y, Punyavachira P. Randomized comparison of glyceryl trinitrate and prostaglandin E2 for cervical ripening at term. Obstet Gynecol 2000; 96: 549-53.
Sharma Y, Kumar S, Mittal S, Misra R, Dadhwal V. Evaluation of glyceryl trinitrate, misoprostol, and prostaglandin E gel for preinduction cervical ripening in term pregnancy. J Obstet Gynaecol Res 2005; 31: 210-5.
Cacciatore B, Halmesmäki E, Kaaja R, Teramo K, Ylikorkala O. Effects of transdermal nitroglycerin on impedance to flow in the uterine, umbilical, and fetal middle cerebral arteries in pregnancies complicated by preeclampsia and intrauterine growth retardation. Am J Obstet Gynecol 1998; 179: 140-5.
Bates CD, Nicoll AE, Mullen AB, Mackenzie F, Thomson AJ, Norman JE. Serum profile of isosorbide mononitrate after vaginal administration in the third trimester. BJOG 2003; 110: 64-7.
Ekerhövd E, Bullarbo M, Andersch B, Norström A. Vaginal administration of the nitric oxide donor isosorbide mononitrate for cervical ripening at term: a randomized controlled study. Am J Obstet Gynecol 2003; 189: 1692-7.
Kahler C, Schleussner E, Moller A, Seewald HJ. Nitric oxide donors: effects on fetoplacental blood flow. Eur J Obstet Gynecol Reprod Biol 2004; 115: 10-4.
De Pace V, Chiossi G, Facchinetti F. Clinical use of oxide donors and L-arginine in obstetrics. J Maternal-Fetal Neonatal Med 2007; 20: 569-79.