2008, Número 39
<< Anterior Siguiente >>
Med Univer 2008; 10 (39)
Los extractos de Mycobacterium tuberculosis inducen la producción selectiva de citocinas inflamatorias y receptores de membrana
Arce MAY, Rosas TAG, Salinas CMC, Solís SJM
Idioma: Español
Referencias bibliográficas: 37
Paginas: 79-86
Archivo PDF: 242.76 Kb.
RESUMEN
Antecedentes: en la etapa inicial de la tuberculosis aumenta la concentración de citocinas inflamatorias, mientras que las Th1 y Th2 se producen después de activarse las células T. Los receptores CD14, CD64, CD206 y TLR4 participan en la respuesta contra patógenos intracelulares.
Objetivo: analizar las fracciones de Mycobacterium tuberculosis que estimulan la expresión de CD14, CD64, CD206 y TLR4, y su influencia en la producción de IL-1Β, IL-2, IL-4, IL-10, TNF-α e IFN-γ.
Pacientes y métodos: se estimularon células mononucleares de sangre venosa periférica de voluntarios sanos PPD-positivos a M. tuberculosis con: a) bacterias completas, b) proteínas secretoras-excretoras de la bacteria, c) extracto proteínico, d) extracto lipídico y e) extracto de polisacáridos. Las citocinas del sobrenadante se cuantificaron mediante ELISA y las moléculas de superficie se analizaron por citometría de flujo.
Resultados: las bacterias completas estimularon la expresión de CD14 y CD206 y la producción de IFN-γ, IL-1Β e IL-2. El extracto proteínico estimuló la expresión de CD14, CD206 y TLR4 y la producción de IFN-g, TNF-α, IL-1Β e IL-2. El extracto lipídico influyó en la expresión de CD14, CD206 y en la producción de IFN-γ. El extracto polisacárido estimuló la producción de IL-10 e IFN-γ. Las proteínas secretoras-excretoras estimularon la producción de IFN-γ e IL-2.
Conclusiones: los extractos proteínicos y de polisacáridos de M. tuberculosis estimulan la producción de importantes citocinas inflamatorias y la expresión de receptores en la membrana de fagocitos mononucleares para modular el sistema inmunitario del hospedero.
REFERENCIAS (EN ESTE ARTÍCULO)
North RJ, Jung YJ. Immunity to tuberculosis. Annu Rev Immunol 2004;22:599-623.
Hammer SM, Saag MS, Schechter M, Montaner JS, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA 2006;296:827-43.
Wallis RS, Ellner JJ. Cytokines and tuberculosis. J Leukoc Biol 1994;55:676-81.
Mossman TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145-73.
Giacomini E, Iona E, Ferroni L, Miettinen M, et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166:7033-41.
Takii T, Abe C, Tamura A, Ramayah S, et al. Interleukin-1 or tumor necrosis factor-alpha augmented the cytotoxic effect of mycobacteria on human fibroblasts: application to evaluation of pathogenesis of clinical isolates of Mycobacterium tuberculosis and M. avium complex. J Interferon Cytokine Res 2001;21:187-96.
Yamada H, Mizumo S, Horai R, Iwakura Y, Sugawara I. Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/ beta double-knockout mice. Lab Invest 2000;80:759-67.
Crowle AJ, Elkins N. Relative permissiveness of macrophages from black and white people for virulent tubercle bacilli. Infect Immun 1990;58:632-8.
Natarajan K, Latchumanan VK, Singh B, Singh S, Sharma P. Down-regulation of T helper 1 responses to mycobacterial antigens due to maturation of dendritic cells by 10-kDa Mycobacterium tuberculosis secretory antigen. J Infect Dis 2003;187:914-28.
Lopez M, Sly LM, Luu Y, Young D, et al. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like-receptor-2. J Immunol 2003;170:2409-16.
Torres M, Herrera T, Villareal H, Rich EA, Sada E. Cytokine profiles for peripheral blood lymphocytes from patients with active pulmonary tuberculosis and healthy household contacts in response to the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect Immun 1998;66:176-80.
Brusasca PN, Peters RL, Motzel SL, Klein HJ, Gennaro ML. Antigen recognition by serum antibodies in non-human primates experimentally infected with Mycobacterium tuberculosis. Comp Med 2003;53:165-72.
Beatty WL, Russell DG. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages. Infect Immun 2000;68:6997-7002.
Aldwell FE, Dicker BL, da Silva Tatley FM, Cross MF, et al. Mycobacterium bovis-infected cervine alveolar macrophages secrete lymphoreactive lipid antigens. Infect Immun 2000;68:7003-9.
Rhoades E, Hsu F, Torrelles JB, Turk J, et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol 2003;48:875-88.
Peteroy Kelly M, Venketaraman V, Connell ND. Effects of Mycobacterium bovis BCG infection on regulation of L-arginine uptake and synthesis of reactive nitrogen intermediates in J774.1 murine macrophages. Infect Immun 2001;69:5823-31.
Wang CH, Kuo HP. Nitric oxide modulates interleukin-1beta and tumour necrosis factor-alpha synthesis, and disease regression by alveolar macrophages in pulmonary tuberculosis. Respirology 2001;6:79-84.
Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA. T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 2003;71:3076-87.
Moody DB, Ulrichs T, Muhlecker W, Young DC, et al. CD1cmediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000;404:884-8.
Navoa JA, Laal S, Pirofski LA, McLean GR, et al. Specificity and diversity of antibodies to Mycobacteriumtuberculosis arabinomannan. Clin Diagn Lab Immunol 2003;10:88-94.
Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 2003;83:91-97.
Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 1998;66:1277-81.
Abel B, Thieblemont N, Quesniaux VJ, Brown N, et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 2002;169:3155-62.
Reiling N, Holscher C, Fehrenbach A, Kroger S, et al. Cutting edge: toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 2002;169:3480-4.
Bradford MM. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. Anal Chem 1956;28:350-6.
Reljic R. IFN-gamma therapy of tuberculosis and related infections. J Interferon Cytokine Res 2007;27:353-64.
Roach DR, Bean AG, Demangel C, France MP, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 2002;168:4620-7.
Wieland CW, Florquin S, Pater JM, Weijer S, van der Poll T. Interleukin-1 contributes to an effective clearance of Mycobacterium kansasii from the respiratory tract. Microbes Infect 2006;8:2409-13.
Millington KA, Innes JA, Hackforth S, Hinks TS, et al. Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J Immunol 2007;178:5217-26.
Rook GA, Hernandez Pando R, Dheda K, Teng Seah G. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol 2004;25:483-8.
Al-Attiyah R, Madi N, El-Shamy AS, Wiker H, et al. Cytokine profiles in tuberculosis patients and healthy subjects in response to complex and single antigens of Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 2006;47:254-61.
Sánchez MD, García Y, Montes C, París SC, et al. Functional and phenotypic changes in monocytes from patients with tuberculosis are reversed with treatment. Microbes Infect 2006;8:2492-500.
Rosas Taraco AG, Arce Mendoza AY, Caballero Olín G, Salinas Carmona MC. Mycobacterium tuberculosis up-regulate coreceptors CCR5 and CXCR4 while HIV modulates CD14 favoring concurrent infection. AIDS Res Hum Retroviruses 2006;22:45-51.
Jacobsen M, Repsilber D, Gutschmidt A, Neher A, et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med 2007;85:613-21.
Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, et al. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 2002;118:327-34.
Jo EK, Yang CS, Choi CH, Harding CV. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 2007;9:1087-98.