2007, Número 4
<< Anterior Siguiente >>
Arch Neurocien 2007; 12 (4)
Aspectos clínicos y moleculares de la ataxia de Friedreich y otras ataxias recesivas y esporádicas
Fragoso-Benitez M, López M, Alonso ME, Rasmussen A
Idioma: Español
Referencias bibliográficas: 80
Paginas: 239-251
Archivo PDF: 109.61 Kb.
RESUMEN
La presente revisión propone un algoritmo diagnóstico para las ataxias autosómicas recesivas y las ligadas al cromosoma X; además se revisan brevemente los aspectos clínicos y moleculares de las variantes más frecuentes.
Desarrollo: la ataxia de Friedreich (AF) es la causa más común de ataxia autosómica recesiva en la población caucásica; su frecuencia se estima en 1/40 mil nacidos vivos. Se caracteriza por ataxia progresiva truncal y de extremidades progresiva, de inicio previo a los veinticinco años, acompañada de disminución en propiocepción y sentido de vibración y ausencia de reflejos osteotendinosos en miembros inferiores. Se debe a la expansión de un triplete GAA en el intrón 1 del gen
FXN (frataxina), cuya proteína interviene en el metabolismo del hierro mitocondrial. Estudios recientes han documentado que pacientes con un cuadro típico de AF no presentan la mutación clásica y viceversa, existiendo en el diagnóstico diferencial de AF diversas variantes de ataxias recesivas y esporádicas. En este artículo proponemos el uso de un algoritmo diagnóstico clínico que aunado al estudio molecular permitirá establecer un diagnóstico de certeza con el menor costo y recursos posibles.
Conclusiones: el diagnóstico etiológico certero de las ataxias recesivas y esporádicas es importante en su pronóstico y tratamiento, por lo que proponemos que la clínica sigue siendo una herramienta importante que permite optimizar la realización de pruebas moleculares confirmatorias.
REFERENCIAS (EN ESTE ARTÍCULO)
Di Donato S. The complex clinical and genetic classification of inherited ataxias II. Autosomal recessive ataxias. Neurol Sci 2001; 22: 219-28.
Gómez M, Clark RM, Nath SK, Bhatti S, Sharma R, Alonso E, et al. Genetic admixture of European FRDA genes is the cause of Friedreich ataxia in the Mexican population. Genomics 2004; 84:779-84.
Rasmussen A, Gomez M, Alonso ME, Bidichandani SI. Clinical and genetic heterogeneity of recessive ataxia in the Hispanic population. J Neurol Neurosurg Psychiatry 2006; 77:1370-2.
Alonso-Vilatela ME, Martínez-Ruano L, Mader C, Ochoa A, Yescas P, De Biase I, et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov Disord 2007; 22:1051-3.
Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet 2000; 37: 1-8.
Koenig M. Friedreich ataxia and AVED. En Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, eds: The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001.
Pandolfo M. Friedreich’s ataxia: clinical aspects and pathogenesis. Sem Neurol 1999; 19: 311-21.
Geoffroy G, Barbeau A, Breton G, Lemieux B, Aube M, Leger C, et al. Clinical description and roentgenologic evaluation of patients with Friedreich ataxia. Can J Neurol Sci 1976;3:279-86.
Harding AE. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysis of early diagnosis criteria and intrafamilial clustering of clinical features. Brain 1981;104:589-620.
De Michele G, Filla A, Calvalcanti F, Di Maio L, Pianese L. Late onset Friedreich’s disease: Clinical features and mapping of mutation to the FRDA locus. J Neurol Neurosurg Psychiatry 1994; 57: 977-9.
Klockgether T, Chamberlain S, Wullner U, Fetter M, Dittmann H, Petersen D, et al. Late onset Friedreich’s ataxia. Molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Arch Neurol 1993; 50: 803-6.
Palau F, De Michele G, Vilchez JJ, Pandolfo M, Monros E. Early onset ataxia with cardiomyopathy and retained tendon reflexes maps to Friedreich’s ataxia locus on chromosome 9q. Ann Neurol 1995; 37: 359-62.
Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M. Friedreich’s ataxia: autosomal recessive disease caused by an intron GAA triplet repeat expansion. Science 1996;271:1423-7.
Cossée M, Dürr A, Schmitt M, Dahl N, Trouillas P. Friedrreich’s ataxia: point mutations and clinical presentation of heterozygotes. Ann Neurol 1999;45:200-6.
Mukerji M, Choudhry S, Saleem Q, Padma MV, Maheshwari MC. Molecular analysis of Friedreich’s ataxia locus in Indian population. Acta Neurol Scand 2000;102: 227-9.
Patel PI, Isaya G. Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am J Hum Genet 2001;69:15-24.
Puccio H, Koening M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 2000;9:887-892.
Bidichandani SI, Ashizawa T. Friedreich ataxia. Gene Reviews: genetic disease online reviews at gene tests-gene clinics 2004. Copyright, University of Washington, Seattle. Available at http://www.geneclinics.org/.
Cossée M, Schmitt M, Campuzano V, Reutenauer L, Moutou C, Mandel JL. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci USA 1997. 94:7452-7.
Montermini L, Richter A, Morgan K, Justice CM, Castellotti B. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol 1997; 41: 675-682.
Matsuyama Z, Izumi Y, Kameyama M, Kawakami H, Nakamura S. The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J Med Genet 1999;36:546-8.
Epplen C, Epplen JT, Frank G, Miterski, Santos EJM, Schöls L. Differential stability of the (GAA)n tract in Friedreich ataxia gene. Hum Genet 1997; 99:834-6.
Pandolfo M. Molecular pathogenesis of Friedreich ataxia. Arch Neurol 1999; 56: 1201-8.
Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 1998; 62:111-21.
Gibson TJ, Koonin EV, Musco G, Pastore A, Bork P. Friedreich’s ataxia protein: phylogenic evidence for mitochondrial dysfunction. Trends Neurosci 1996;19:465-58.
Kaplan J. Friedreich’s ataxia is a mitochondrial disorder. Proc Natl Acad Sci USA 1999;96:10948-9.
Lodi R, Cooper JM, Bradley JL, Manners D, Styles P. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 1999;96:11492-5.
González Cabo P, Vazquez Manriquez RP, García Gimeno A, Sanz P, Palau F. Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet 2005;14: 2091-8.
McCabe DJH, Ryan F, Moore DP, McQuaid S, King MD, Kelly A, et al. Typical Fridreich’s ataxia without GAA expansions and GAA expansions without typical Friedreich’s ataxia. J Neurol 2000; 247: 346-55.
Schöls L, Amoiridis G, Przuntek H, Frank G, Epplen JT, Epplen C. Friedreich’s ataxia: revision of the phenotype according to molecular genetics. Brain 1997; 120: 2131-40.
Holroyd S, Reiss AL, Bryan RN. Autistic features in Joubert syndrome: a genetic disorder with agenesis of the cerebellar vermis. Biol Psychiatry 1991; 29: 287-94.
Botez-Marquard T, Botez MI. Cognitive behavior in heredodegenerative ataxias. Eur Neurol 1993; 33: 351-7.
Chafetz MD, Friedman AL, Kevorkian CG, Levy JK: The cerebellum and cognitive function: implications for rehabilitation. Arch Phys Med Rehabil 1996; 77: 1303-8.
Neau JP, Arroyo-Anllo E, Ingrand P, Gil R. Neuro-psychological disturbances in cerebellar infarcts. Acta Neurol Scand 2000; 102: 363-70.
Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 2000; 123: 1051-61.
Schmahmann JD. Neuropsychological abnormalities in cerebellar syndromes: fact or fiction? Int Rev Neurobiol 1997; 41: 455-71.
Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol 1997;41:433-40.
Steinlin M, Styger M, Boltshauser E. Cognitive impairments in patients with congenital nonprogressive cerebellar ataxia. Neurology 1999; 55: 966-73.
Vandeinse D, Homyak JE. Linguistic and cognitive deficits associated with cerebellar mutism. Pediatr Rehabil 1997;1:41-4.
White M, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich’s ataxia. Acta Neurol Scand 2000;102: 222-6.
Bower JM, Parsons LM. Rethinking the “Lesser Brain”. Sci Am 2003; 289: 50-7.
Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired nonmotor learning and error detection associated with cerebellar damage: a single-case study. Brain 1992;115:155-78.
Grafman J, Litvan I, Massaquoi S. Cognitive planning in patients with cerebellar atrophy. Neurology 1992; 42: 1493-6.
Gardner M. The icosian game and the tower of Hanoi. En: Gardner M, ed. Hexaflexagons and other mathematical diversions: the first scientific American book of puzzles and games. Nueva York: Simon and Schuster; 1959.
Babaei M, Mitui M, Olson ER, Gatti RA. ATM hapoltypes and associated mutations in Iranian patients with ataxiatelangiectasia: recurring homozygosity without a founder haplotype. Hum Genet 2005; 117: 101-6.
Kops GJPL, Weaver BAA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005; 5: 773-85.
Paulson H, Ammache Z. Ataxia and hereditary disorders. Neurol Clin 2001; 19: 759-82.
Lavin MF, Delia D, Chessa L. ATM and the DNA damage response. Workshop on ataxia-telangiectasia and related syndromes. EMBO reports 2006; 7: 154-60.
Gatti RA. Ataxia-Telangiectasia. En Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, eds. The Metabolic and Molecular Bases of Inherited Disease. Nueva York: McGraw-Hill; 2001; 705-32.
Boder E, Sedgwick RP. Ataxia-telangiectasia: A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 1958; 21: 526-54.
Swift A, Morell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991; 325: 1831-6.
Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 1987; 316: 1289-94.
Kim JH, Kim H, Lee KY, Choe KH, Ryu JS, Sung SW, et al. Genetic polymorphism of Ataxia Telangiectasia mutated affect lung cancer risk. Hum Mol Genet 2006; 15: 1181-6.
Perlman SL. Treatment of ataxia-telangiectasia. En: Gatti RA, Painter RB, eds. Ataxia-telangiectasia. Heidelberg: Springer-Verlag, 1993.
Burck U, Goebel HH, Kuhlendahl HD, Meier C, Goebel KM. Neuromyopathy and vitamin E deficiency in man. Neuropediatrics 1981; 12: 267-78.
Ben Hamida M, Belal S, Sirugo G, Ben Hamida C, Panaydes K, Ioannou P, et al. Friedreich’s ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology 1993; 42: 2179-83.
Dorflinger N, Linder C, Ouahchi K, Gyapay G, Weissnbach J, Le Paslier, et al. Ataxia with vitamin E deficiency: Refinement of genetic. Localization and analysis of linkage disequilibrium using new markers in 14 families. Am J Hum Genet 1995;56:1116-24.
Kayden HJ. The neurologic syndrome of vitamin E deficiency: A significant cause of ataxia. Neurology 1993; 43: 2167-9.
Shimazaki H, Takiyama Y, Sakoe K. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology 2002; 59: 590-5.
Le Ber I, Moreira MC, Rivaud-Péchoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain 2003; 126: 2761-72.
Gueven N, Becherel OJ, Kijas AW, Chen P, Howe O, Rudolph JH. Aprataxin a novel protein that protects against genotoxic stress. Hum Mol Genet 2004; 13: 1081-93.
Duquette A, Roddier K, McNabb-Baltar J, Gosselin I, St-Denis A, Dicaire MJ, et al. Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 2005; 57: 408-14.
Shimazaki H, Takiyama Y, Sakoe K, Ando Y, Nakano I. A phenotype without spacity in sacsin-related ataxia. Neurology 2005; 64:21;29-31.
Grieco GS, Malandrini A, Comanducci G, Leuzzi V, Valoppi M, Tessa A, et al. Novel SACS mutations in autosomal recessive spastic ataxia of Cherlevoix-Saguenay type. Neurology 2004; 62:103-6.
Criscuolo C, Banfi S, Orio M, Gasparini P, Monticelli A, Scarano V, et al. A novel mutation in SACS gene in a family from Southern Italy. Neurology 2004; 62:100-2.
Ogawa T, Takiyama Y, Sakoe K, Mori K, Namekawa M, Shimazaki H. Identification of SACS gene missense mutation in ARSACS. Neurology 2004; 62:107-9.
Gomez CM. ARSACS goes global [editorial]. Neurology 2004; 62:10-1.
Jacquemont S, Hagerman RJ, Leehey M, Grigsby J, Zhang L, Brunberg JA, et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003; 72: 869-78.
Saul RA, Tarleton JC. FMR1 Related disorders. Gene reviews: genetic disease online reviews at gene tests-gene clinics 2005. Copyright, University of Washington, Seattle. Available at http://www.geneclinics.org/.
Hagerman PJ, Hagerman RJ. The fragile-X premutation: a maturing perspective. Am J Hum Genet 2004; 74: 805-16.
Hagerman RJ, Leavitt BR, Farzin F, Jacquemont S, Greco CM, Brunberg JA, et al. Fragil-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 permutation. Am J Hum Genet 2004; 74:1051-6.
Greco CM, Berman RF, Martin RM, Tassone F, Schwartz PH, Trapp BD, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006; 129: 243-55.
Iwashashi CK, Yasui DH, An HJ, Greco CM, Tassone F, Nannen K, et al. Protein composition of the intranuclear inclusions of FXTAS. Brain 2006; 129: 256-7.
Ranum LPW, Day JW. Pathogenic RNA repeats: an expanding role in genetic disease. Trends in Genet 2004; 20: 506-512.
Nikali K, Suomalainen A, Saharinen J, Kuokkanen M, Spelbrink JN, Lönnqvist T, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005;14: 2981-90.
Wenning GK, Colosimo C, Geser F, Poewe W. Multiple system atrophy. Lancet Neurol 2004; 3:93-103.
Bradbury J. Modelling in multiple system atrophy in mice. Lancet Neurol 2005; 4: 273.
Christine CW, Aminoff MJ. Clinical differentiation of Parkinsonian syndromes: prognostic and therapeutic relevance. Am J Med 2004; 117: 412-9.
Ben-Shlomo Y, Wenning GK, Tison F, Quinn NP. Survival of patients with pathologically proven system multiple atrophy: a meta-analysis. Neurology 1997; 48: 384-93.
Gros-Louis F, Dupré N, Dion P, Fox MA, Laurent S, Verrault S, Sanes JR, Bouchard JP, Rouleau GA. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 2007; 39:81-5.