2008, Número 4
Donador exógeno de óxido nítrico en la respuesta inflamatoria hepática y hemodinámica después de choque hemorrágico
Anaya-Prado R, Toledo-Pereyra LH, Ren-Feng G, Reuben J, Ward PA
Idioma: Español
Referencias bibliográficas: 31
Paginas: 291-298
Archivo PDF: 121.71 Kb.
RESUMEN
Introducción: El choque hemorrágico resulta en estrés oxidativo celular e inducción de respuesta inflamatoria. Investigamos la capacidad del nitroprusiato de sodio para reducir la lesión tisular en un modelo animal de choque hemorrágico no controlado.
Material y métodos: 72 ratas Sprague-Dawley distribuidas en cuatro grupos: sham/salina,
sham/nitroprusiato de sodio, choque/salina, choque/nitroprusiato de sodio. Se provocó choque hemorrágico (3 ml/100 g) en un periodo de 15 minutos; corte de cola y administración de la droga a los 30 minutos; reanimación hídrica con solución de ringer lactado (RL) para alcanzar presión arterial media (PAM) de 40 mm Hg; una fase de 60 minutos con hemostasia y reanimación hídrica con solución de RL para mantener PAM de 70 mm Hg; y una fase de observación de tres días. El tratamiento al inicio de la reanimación consistió en solución salina o 0.5 mg/kg de nitroprusiato de sodio. Se evaluó requerimiento hídrico para reanimación, función hepática, mieloperoxidasa de tejido hepático, histología hepática y sobrevida.
Resultados: El nitroprusiato de sodio redujo significativamente los requerimientos hídricos para reanimación (p = 0.0001) y produjo mejoría en las pruebas de lesión hepática, infiltración neutrofílica evidenciada por mieloperoxidasa de tejido hepático, y estudios histológicos. Se incrementó la sobrevida de 40 % en los controles a 60 % con el nitroprusiato de sodio.
Conclusiones: El exceso de óxido nítrico media la lesión hepática inducida por el choque hemorrágico, y la supresión de óxido nítrico con nitroprusiato de sodio puede reducir las consecuencias patológicas de la hemorragia severa, posiblemente por la eliminación del anión superóxido (O
2–), limitando la producción de radicales más tóxicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma 1996;40:501-512
Hierholzer C, Harhrecht B, Menezes JM, Kane J, MacMicking J, Nathan CF, Peitzman AB, Billiar TR, Tweardy DJ. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 1998;187:917-928.
Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997;11:118-124.
Zsabo C, Billiar TR. Novel roles of nitric oxide in hemorrhagic shock. Shock 1999;12:1-9.
Zsabo C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 1996;6:79-88.
Zsabo C, Zingarelli B, Salzman L. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ Res 1996;78:1051-1063.
Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6:3051-3064.
Chaudry IH, Ayala A, Ertel W, Stephan RL. Hemorrhage and resuscitation: immunological aspects. Am J Physiol 1990;259:R663-R678.
Zsabo C, Farago M, Horvath I, Lohinai Z, Kovach AG. Hemorrhagic hypotension impairs endothelium-dependent relaxation in the renal artery of the rat. Circ Shock 1992;36:238-241.
Kelly E, Shah NS, Morgan NN, Watkins SC, Peitzman AB, Billiar TR. Physiologic and molecular characterization of the role of nitric oxide in hemorrhagic shock: evidence that type II nitric oxide synthase does not regulate vascular decompensation. Shock 1997;7:157-163.
Thiemermann C, Zsabo C, Mitchell JA, Vane JR. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci USA 1993;90:267-271.
Harbrecht BG, Wu B, Watkins SC, Billiar TR, Pietzmann AB. Inhibition of nitric oxide synthase during severe shock but following resuscitation increases hepatic injury and neutrophil accumulation in hemorrhaged rats. Shock 1997;8:415-421.
Yao YM, Bahrami S, Leichtfried G, Redl H, Schlag G. Significance of NO in hemorrhage-induced hemodynamic alterations, organ ijury, and mortality in rats. Am J Physiol 1996;270(Heart Circ Physiol 39):H1616-H1623.
Brown IP, Williams RL, McKirnan MD, Limjoco UR, Gray CG. Nitric oxide synthesis inhibition does not improve the hemodynamic response to hemorrhagic shock in dehydrated conscious swine. Shock 1995;3:292-298.
Menezes J, Hierholzer C, Watkins SC, Lyons V, Peitzman AB, Billiar TR, et al. A novel nitric oxide scavenger decreases liver injury and improves survival after hemorrhagic shock. Am J Physiol 1999;277(Gastrointest Liver Physiol 40):G144-G151.
Young JS, Rayhrer CS, Edmisten TD, Cephas GA, Tribble CG, Kron IL. Sodium nitroprusside mitigates oleic acid-induced acute lung injury. Ann Thorac Surg 2000;69:224-227.
King RC, Binns OAR, Kanithanon RC, Cope JT, Chun RL, Shockey KS, et al. Low-dose sodium nitroprusside reduces pulmonary reperfusion injury. Ann Thorac Surg 1997;63:1398-1404.
Yamashita M, Schmid RA, Ando K, Cooper JD, Patterson GA. Nitroprusside ameliorates lung allograft reperfusion injury. Ann Thorac Surg 1996;62:791-797.
Fukuda H, Sawa Y, Kadoba K, Taniguchi K, Shimazaki Y, Matsuda H. Supplement of nitric oxide attenuates neutrophil-mediated reperfusion injury. Circulation 1995;(suppl II):II-413-II-416.
Andrews FJ, Malcontenti-Wilson C, O’Brien PE. Protection against gastric ischemia-reperfusion injury by nitric oxide generators. Dig Dis Sci 1994;39:366-373.
Benz S, Schnabel R, Weber H, Pfeffer F, Wiesner R, Breitenbuch PV, et al. The nitric oxide donor sodium nitroprusside is protective in ischemia/reperfusion injury of the pancreas. Transplantation 1998;66:994-999.
Anaya-Prado R, Toledo-Pereyra LH, Collins TJ, Smejkal R, McClaren J, Crouch LD, Ward PA. Dual blockade of P-selectin and B-2-integrin in the liver inflammatory response after uncontrolled hemorrhagic shock. J Am Coll Surg 1998;187:22-31.
Smail N, Catania RA, Wang P, Cioffi WG, Bland KI, Chaudry IH. Gut and Liver: the organs responsible for increased nitric oxide production after trauma-hemorrhage and resuscitation. Arch Surg 1998;133:399-405.
Suzuki K, Ota H, Sasagawas S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 1983;132:345-352.
Andrews PC, Krinsky NI. Human myeloperoxidase and hemimyeloperoxidase. In: di Sabato G, and Everse J, eds. Methods in Enzymology. New York: Academic Press;1986:369-371.
Suzuki S, Toledo-Pereyra LH, Rodríguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation 1993;55:1265-1272.
Lander HM, Ogiste JS, Teng KK, Novogrodky A. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 1995;270:21195-21198.
Peng HB, Libby P, Liao JK. Induction and stabilization of I - by nitric oxide mediates inhibition of NF. J Biol Chem 1995;270:14214-14219.
Anaya-Prado R, Toledo-Pereyra LH, Lentsch AB, Ward PA. Ischemia/ reperfusion injury. J Surg Res 2002;105:248-258.
Kelly E, Hierholzer C, Harbrecht BG. Traumatic shock induces type 2 nitric oxide synthase mRNA exprssion in the human liver. Surg Forum 1996;47:32-33.
Anaya-Prado R, Toledo-Pereyra LH, Walsh J, Guo RF, Reuben J, Ward PA. Exogenous nitric oxide donor and related compounds protect against lung inflammatory response following hemorrhagic shock and resuscitation. J Trauma Injury Infect Crit Care 2004;57:980-988.