2008, Número 4
18FDG PET/CT en linfoma primario de mama y cáncer de mama
Estrada-Sánchez G, Ochoa-Carrillo FJ, Altamirano-Ley J
Idioma: Español
Referencias bibliográficas: 45
Paginas: 279-286
Archivo PDF: 179.77 Kb.
RESUMEN
Introducción: En México, 13.6 % de las mujeres entre 15 y 29 años y 19 % de aquellas entre 30 y 64 años mueren por cáncer de mama.
Material y métodos: Se realizaron 1728 estudios oncológicos; fueron incluidos 295 pacientes, 293 con cáncer de mama (17 %) y dos pacientes con linfoma primario de mama (0.1 %).
Resultados: 98 % de los pacientes fue del sexo femenino. El promedio de SUVmáx para linfoma primario de mama fue de 3.2 ± 1.4; en cáncer de mama, de 4.2 ± 2.6. Las metástasis se reportaron en cuello (4.4 %, SUVmáx 2.7), cadena mamaria interna (5 %, SUVmáx 5.3), mediastino (8.3 %, SUVmáx 5.0), retroperitoneo (6 %, SUVmáx 5.4), axila ipsolateral (94 %, SUVmáx 4.5), contralateral (4.4 %, SUVmáx 2.8), músculo pectoral (10.2 %, SUVmáx 2.6), pleura (4.4 %, SUVmáx 3.9), pulmón (32.3 %, SUVmáx 2.9), hígado (19.1 %, SUVmáx 4.5), hueso (36.7 %), glándula adrenal (4.4 %, SUVmáx 2.4), cerebro (4.4 %). Una paciente presentó hiperplasia por rebote tímico secundario a quimioterapia. El SUVmáx promedio para las lesiones óseas blásticas fue de 5.4 ± 2.9; para las líticas, de 6.7 ± 2.4; para las no aparentes por tomografía computarizada, de 4.6 ± 2.4. La incidencia de segundo tumor primario fue de 4.7 %.
Conclusiones: El SUVmáx de los tumores primarios fue similar al informado en la literatura; para las lesiones óseas metastásicas fue mayor. La utlización de PET/CT en el seguimiento de los pacientes con lesiones mamarias es costo eficiente.
REFERENCIAS (EN ESTE ARTÍCULO)
National Institute of Statistics, Geography and Informatics (INEGI). Mexico: February 2006. Available at http://www.inegi.gob.mx/inegi/contenidos/espanol/prensa/default.asp?c=269&e=
American Cancer Society, Cancer Facts and Figures 2005. Atlanta, GA; American Cancer Society;2005.
Schuster DM, Halkar RK. Molecular imaging in breast cancer. Radiol Clin North Am 2004;42:885-908.
Pichardo RP, Estrada G. Ca de mama. En: Altamirano J, Estrada G, Carreras JL, eds. PET y PET/CT en Oncología. México: Intersistemas; 2005. pp. 107-113.
Godoy A, Ulloa V, Rodríguez F, Reinicke K, Yáñez AJ, García M de L, et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006;207:614-627.
Baker R, Slayden G, Jennings W. Multifocal primary breast lymphoma. South Med J 2005;98:1045-1048.
Minn H, Soini I. [18F]fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 1989;15:61-66.
Kubota K, Matsuzawa T, Amemiya A, Kondo M, Fujiwara T, Watanuki S, et al. Imaging of breast cancer with [18F]fluorodeoxyglucose and positron emission tomography. J Comput Assist Tomogr 1989;13:1097-1098.
Kumar R, Alavi A. Fluorodeoxyglucose-PET in the management of breast cancer. Radiol Clin North Am 2004;42:1113-1122.
Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995;36:1766-1774.
Kumar R, Zhuang H, Schnall M, Conant E, Damia S, Weinstein S, Chandra P, Czerniecki B, Alavi A. FDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl Med Commun 2006;27:231-236.
Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73-92.
Bénard F, Turcotte E. Imaging in breast cancer: single-photon computed tomography and positron-emission tomography. Breast Cancer Res 2005;7:153-162.
Fueger BJ, Weber WA, Quon A, Crawford TL, Allen-Auerbach MS, Halpern BS, et al. Performance of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol 2005;7:369-376.
Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Jänicke F, Avril N. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 2005;46:1144–1150.
Avril NE, Weber W. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 2005;43:189-204.
Isasi CR, Moadel RM, Blaufox MD A meta-analysis of FDG-PET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 2005;90:105-112.
Gallowitsch HJ, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, et al. F-18 fluorodeoxyglucose positron emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol 2003;38:250-256.
Estrada SG, Mireles EM, Valverde N. Confiabilidad del CA 15-3 como seguimiento en las pacientes con carcinoma mamario y metástasis óseas. Rev Invest Científica Instituto Nacional de la Nutrición “Salvador Zubirán” 2003;2:18-21.
Goerres GW, Michel SC, Fehr MK, Kaim AH, Steinert HC, Seifert B, et al. Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol 2003;13:1635-1644.
Inoue T, Yutani K, Taguchi T, Tamaki Y, Shiba E, Noguchi S. Preoperative evaluation of prognosis in breast cancer patients by [(18)F]2-deoxy-2-fluoro- D-glucose- positron emission tomography. J Cancer Res Clin Oncol 2004;130:273-278.
Tran A, Pio BS, Khatibi B, Czernin J, Phelps ME, Silverman DH. 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outerquadrant tumors: comparison with long-term clinical outcome. J Nucl Med 2005;46:1455-1459.
Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 2005;32:1253-1258.
Liu Y. PET-CT demonstration of extensive muscle metastases from breast cancer. Clin Nucl Med 2006;31:266-268.
Korn RL, Yost AM, May CC, Kovalsky ER, Orth KM, Layton TA, Drumm D. Unexpected focal hypermetabolic activity in the breast: significance in patients undergoing 18F-FDG PET/CT. Am J Roentgenol 2006;187:81-85.
Kazerouni N, Greene MH, Lacey JV Jr, Mink PJ, Schairer C. Family history of breast cancer as a risk factor for ovarian cancer in a prospective study. Cancer 2006;107:1075-1083.
Mellemkjaer L, Friis S, Olsen JH, Scélo G, Hemminki K, Tracey E, et al. Risk of second cancer among women with breast cancer. Int J Cancer 2006;118:2285-2292.
Vidal-Millán S, Zeichner-Gancz I, Flores-Estrada D, Vela-Rodríguez BE, Vázquez-López MI, Robles-Vidal CD, et al. A descriptive study of second primary malignancies associated to breast cancer in a Mexican Hispanic population. Med Oncol 2005;22:17-22.
Santiago JF, Gonen M, Yeung H, Macapinlac H, Larson S. A retrospective analysis of the impact of 18F-FDG PET scans on clinical management of 133 breast cancer patients. Q J Nucl Med Mol Imaging 2006;50:61-67.
Khandelwal AK, Garguilo GA. Therapeutic options for occult breast cancer: a survey of the American Society of Breast Surgeons and review of the literature. Am J Surg 2005;190:609-613.
Upalakalin JN, Collins LC, Tawa N, Parangi S. Carcinoid tumors in the breast. Am J Surg 2006;191:799-805.
Vigliotti ML, Dell’olio M, La Sala A, Di Renzo N. Primary breast lymphoma: outcome of 7 patients and a review of the literature. Leuk Lymphoma 2005;46:1321-1327.
Avilés A, Delgado S, Nambo MJ, Neri N, Murillo E, Cleto S. Primary breast lymphoma: results of a controlled clinical trial. Oncology 2005;69:256-260.
Pisani F, Romano A, Anticoli Borza P, Marino M, Micheli A, Botti C. Diffuse large B-cell lymphoma involving the breast. A report of four cases. J Exp Clin Cancer Res 2006;25:277-281.
Kyoung Jung H, Kim EK, Yun M, Jung Kim M, Young Kwak J. Bilateral breasts involvement in Burkitt’s lymphoma detected only by FDG-PET. Clin Imaging 2006;30:57-59.
Kumar R, Xiu Y, Dhurairaj T, Yu JQ, Alavi A, Zhuang H. F-18 FDG positron emission tomography in non-Hodgkin lymphoma of the breast. Clin Nucl Med 2005;30:246-248.
Sehbai AS, Tallaksen RJ, Bennett J, Abraham J. Thymic hyperplasia after adjuvant chemotherapy in breast cancer. J Thorac Imaging 2006;21:43-46.
Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. RadioGraphics 2004;24:1411–1431.
Janes SE, Lengyel JA, Singh S, Aluwihare N, Isgar B. Needle core biopsy for the assessment of unilateral breast masses in men. Breast 2006;15:273-275.
Wise GJ, Roorda AK, Kalter R. Male breast disease. J Am Coll Surg 2004;42:255-269.
Weinberg IN, Beylin D, Zavarzin V, Yarnall S, Stepanov PY, et al. Positron emission mammography: high-resolution biochemical breast imaging. Technol Cancer Res Treat 2005;4:55-60.
Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 2006;12:309-323.
Rosen EL, Turkington TG, Soo MS, Baker JA, Coleman RE. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology 2005;234:527-534.
Tafra L, Cheng Z, Uddo J, Lobrano MB, Stein W, et al. Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer. Am J Surg 2005;190:628-632.
Sloka JS, Hollett PD, Mathews M. Cost-effectiveness of positron emission tomography in breast cancer. Mol Imaging Biol 2005;7:351-360.