<< Anterior Siguiente >>
Salud Mental 2008; 31 (3)
Jiménez-Rubio G, Ugalde O, Ortíz–López L, Ramírez-Rodríguez G, Benítez-King G
Idioma: Español
Referencias bibliográficas: 78
Paginas: 221-228
Archivo PDF: 121.45 Kb.
RESUMEN
La enfermedad de Alzheimer es una enfermedad neurodegenerativa progresiva que cursa con una deficiencia en las capacidades cognitivas, así como con la presencia de síntomas psiquiátricos y alteraciones conductuales. Las características histopatológicas más importantes en la enfermedad de Alzheimer son la formación de placas seniles, los ovillos neurofibrilares y un incremento en el estrés oxidativo.
La polaridad estructural y la morfología neuronal se pierden en la enfermedad de Alzheimer. La proteína tau se encuentra anormalmente fosforilada, los microtúbulos se despolimerizan, se pierden la forma asimétrica de las neuronas y la conectividad sináptica, y se interrumpe el transporte axoplasmático.
Asimismo, se ha sugerido que la inhibición o la pérdida en el balance de la formación de neuronas en el hipocampo puede participar en la fisiopatología de la enfermedad de Alzheimer debido a que el cerebro no puede reparar el daño neuronal y consecuentemente induce la pérdida de la cognición.
Los agentes colinérgicos son los medicamentos más aceptados en el tratamiento de la enfermedad de Alzheimer en una etapa en que los síntomas se clasifican de medios a moderados. Sin embargo, el tratamiento de pacientes con enfermedad de Alzheimer grave es limitado. Por lo anterior se requiere la búsqueda de nuevas alternativas para el tratamiento de esta enfermedad.
La melatonina es una indolamina que actúa como un potente antioxidante, como un modulador de la organización del citoesqueleto así como un factor de diferenciación celular.
Diversos estudios han sugerido que la melatonina tiene un efecto neuroprotector por su capacidad de captar radicales libres. La melatonina disminuye la lipoperoxidación y la apoptosis producida por la administración de ácido ocadáico (AO) o peróxido de O ). Se sabe que las especies reactivas de oxígeno hidrógeno (H
2 O
2 producen alteraciones en la organización del citoesqueleto e influyen el estado de fosforilación de la proteína tau y que la melatonina previene la fosforilación de la proteína tau debido a su actividad antioxidante.
Se ha descrito que la melatonina modula el arreglo de los microfilamentos de actina y la formación de fibras de tensión en las células Madin-Darby canine kidney (MDCK) por medio de una interacción concertada de la indolamina con la calmodulina y con la proteína cinasa C (PKC) y la participación de la proteína cinasa dependiente de Rho (ROCK). Asimismo, la melatonina participa en las etapas tempranas de la formación de neuritas en las células N1E-115 por medio de ROCK.
Otros estudios han indicado que la melatonina previene el daño en el citoesqueleto producido por el AO en las células N1E-115. El AO se ha utilizado para reproducir en células en cultivo las alteraciones en el citoesqueleto y el incremento en el estrés oxidativo que ocurren en las neuronas de pacientes con enfermedad de Alzheimer.
La melatonina en estas células previene la retracción del citoesqueleto, efecto del AO. La red del citoesqueleto se mantiene en el citoplasma y en las neuritas de las células N1E-115 cultivadas con melatonina, no obstante que sean tratadas con el AO posteriormente. Recientemente, se demostró que en las células de neuroblastoma N1E-115 incubadas con melatonina se previene la hiperfosforilación de la proteína tau causada por el AO.
Aunado a lo anterior, se ha demostrado que la melatonina modula la formación de neuronas nuevas en un modelo in vitro utilizando células embrionarias y de corteza cerebral de ratón. La formación de neuronas inducida por la melatonina se corroboró utilizando células precursoras aisladas de animales adultos así como en animales adultos, y se encontró que la indolamina moduló la sobrevida de las células nuevas formadas, así como la diferenciación de éstas en neuronas nuevas.
Las evidencias presentadas en esta revisión indican que la melatonina puede ser útil como un coadyuvante en el tratamiento de las demencias.
REFERENCIAS (EN ESTE ARTÍCULO)
Roger B, Gerry H. Realistic expectations: The management of severe alzheimer disease. Alzh Dis Assoc Disor 2003; 17(3):S80-S85.
Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal L et al. The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 2000; 55:1278-1283.
Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS et al. Disruption of neurogenesis by amyloid beta-peptide and perturbed neural progenitor cell homeostasis, in models of alzheimer’s disease. J Neurochem 2002; 83(6):1509-1524.
Kuhn HG, Cooper-Kuhn CM, Boekhoorn K, Lucassen PJ. Changes in neurogenesis in dementia and alzheimer Mouse models: are they functionally relevant. Eur Arch Psychiatry Clin Neurosci 2007; 257(5):281-289.
Kowall NW, Kosik KS. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann Neurol 1987; 22:639-643.
Cid-Arregui A, De Hoop M, Dotti CG. Mechanism of neuronal polarity. Neurobiol Aging 1995; 16:239-243.
Avila J. Tau aggregation into fibrillar polymers: taupathies. FEBS Lett 2000; 30:89-92.
Eidenmuller J, Fath T, Hellwing A, Reed J, Sontag E et al. Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins. Biochemistry 2000; 39:13166-13175.
Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 1994; 87:554-567.
Brandt R, Lee G. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein. Cell Motil Cytoskeleton 1994; 28:143 -154.
Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Nat Acad Sci USA 1997; 94:298-303.
Griffin JW, Watson DF. Axonal transport in neurological disease. Ann Neurol 1988; 23:3-13.
Benítez-King G, Ortíz-López L, Morales-Mulia S, Jiménez-Rubio G, Ramírez- Rodríguez G et al. Phosphorylation-Dephosphorylation imbalance of cytoskeletal associated proteins in neurodegenerative diseases. Recent Patents CNS Drug Discovery 2006; 1:1-12.
Singh TJ, Grundke-Iqbal I, Wu WQ, Chauhan V, Novak M et al. Protein kinase C and calcium/calmodulin-dependent protein kinase II phosphorylate three-repeat and four-repeat tau isoforms at different rates. Mol Cell Biochem 1997; 168(1-2):141-148.
Bennecib M, Gong C-X, Grundke-Iqbal I, Iqbal K. Role of protein phosphatase- 2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett 2000; 485:87-93.
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 1992; 42:631-639.
Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 1997; 18:351-357.
Delacourte A, David JP, Sergeant N, Buee L, Wattez A et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999; 52:1158-1165.
Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochem Biophys Act 2000;1502:139-144.
Borg J, London J. Copper/zinc superoxide dismutase overexpression promotes survival of cortical neurons exposed to neurotoxins in vitro 2. J Neurosci Res 2002; 70:180–189.
Milzani A, Dalledonne I, Colombo R. Prolonged oxidative stress on actin 3. Arch Biochem Biophys 1997; 339:267–274.
Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis 2004; 6:659-671.
Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G et al. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 2000; 59:880-888.
Hinshaw DB, Miller MT, Omann GM, Beals TF, Hyslop PA. A cellular model of oxidant-mediated neuronal injury. Brain Res 1993; 25:13-26.
Banan A, Fields JZ, Zhang Y, Keshavarzian A. iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers. Am J Physiol Gastrointest Liver Physiol 2001; 280:1234-1246.
O’Loghlen A, Perez-Morgado MI, Salinas M, Martin ME. Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide Potential regulation of eIF2alpha phosphorylation in differentiated PC12 cell. Arch Biochem Biophys 2003; 417:194-202.
Howe CJ, Lahair MM, Maxwell JA, Lee JT, Robinson PJ et al. Participation of the calcium/calmodulin-dependent kinases in hydrogen peroxide- induced Ikappa B phosphorylation in human T lymphocytes. J Biol Chem 2002; 23:30469-30476.
Maher P. How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. J Neurosci 2001; 21:2929-2938.
Forlenza OV, Spink JM, Dayanandan R, Anderton BH, Olesen OF et al. Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3beta inhibition and in neurons. J Neural Transm 2000; 107:1201-1212.
German DC, Eisch AJ. Mouse models of Alzheimer´s disease: insight into treatment. Rev Neurosci 2004; 15(5):353-369.
Zhang C, McNeil E, Dressler L, Siman R. Long lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer´s disease. Exp Neurol 2007; 1:77-87.
Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer´s type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 2007; 27(25):6771-6780.
Tatebayashi Y, Lee MH, Li L, Iqbal K, Grundke-Iqbal I. The dentate gyrus neurogenesis: a therapeutic target for alzheimer’s disease. Acta Neuropathol 2003; 105(3):225-232.
Rogers SL, Doody RS, Mohs RC, Friedhoff LT. Donepezil improves cognition and global function in Alzheimer disease: a 15-week.double blind placebo-controlled study. Donepezil Study Group (see comments). Arch Intern Med 1998a; 158(9):1021-1031.
Burns A, Rossor M, Hecker J, Gauthier S, Petit H et al. The effects of donepezil in Alzheimer’s disease –results from a multinational trial. Dementia Ger Cog Disor 1999; 10:327-244.
Schneider LS, Farlow AR. Systematic review of the efficacy of rivastigmine for the patients with Alzheimer’s disease. Inter J Ger Psychophar 1998; 1(Suppl 1):S26-S34.
Harvey AL. The pharmacology of galantamine and its analogues. Pharmacol Therap 1995; 68(1):113-128.
Maelicke A, Coban T, Storch A, Schrattenholz A, Pereira EF et al. Alosteric modulation of Torpedo nicotinic acetylcholine receptor ion channel activity by noncompetitive agonists. J Recep Signal Trans Res 1997; 17(1-3):11-28.
Wilcock GK, Scott M, Pearsall T, Neubauer K. Galanthamine and the treatment of Alzheimer’s disease. Int J Ger Psych 1993; 8:781-782.
Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT. A 24-week, double- blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group. Neurology 1998b; 50(1):136-145.
Honig LS, Chamblis DD, Bigio EH, Carroll SL, Elliot JL. Glutamate transporter EAAT2 splice variants occur not only in ALS but also in AD and controls. Neurology 2000; 55:1082-1088.
Sze C, Bi H, Kleinschmidt-Demasters BK, Martin LJ. N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimers disease. J Neurol Sci 2000; 182:151-159.
Reisenberg B, Windscheif V, Ferris SH, Hingorani VN, Stoeffer A et al. Memantine in moderately severe to severe Alzheimer’s disease (AD): results of a placebo-controlled 6-month trial. Neurobiol Aging 2000; 21(Suppl 1):S275.
Benítez-King G, Rios A, Martínez A, Anton-Tay F. In vitro inhibition of Ca++/calmodulin dependent protein kinase II activity. Biochem Biophys Acta 1996; 1290:191-196.
Anton-Tay F, Ramirez G, Martinez I, Benitez-King G. In vitro stimulation of protein kinase C by melatonin. Neurochem Res 1998; 23:605-610.
Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Progr Neurobiol 1998; 56:359-384.
Reiter RJ, Acuña-Castroviejo D, Tan DX, Burkhardt S. Free radical-mediated molecular damage: mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 2001; 939:200-215.
Acuña-Castroviejo D, Coto-Montes A, Gaia MM, Ortíz GG, Reiter RJ. Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 1997; 60:L23-L29.
Mayo JC, Sainz RM, Uria H, Antolin I, Esteban M. Inhibition of cell proliferation: a mechanism likely to mediate the prevention of neuronal cell death by melatonin. J Pineal Res 1998; 25:12-18.
Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ et al. Melatonin protects hippocampal neurons in vivo against kainic acid- induced damage in mice. J Neurosci Res 1998; 54:382-389.
Benitez-King G, Tunez I, Bellon A, Ortiz GG, Anton-Tay F. Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp Neurol 2003; 182:151-159.
Benítez-King G, Ortíz-López L, Jiménez-Rubio G. Melatonin precludes cytoskeletal collapse caused by hydrogen peroxide: participation of protein kinase C. Therapy 2005; 2:762-778.
Wang J, Wang Z. Role of melatonin in Alzheimer-like neurodegeneration. Acta Pharmacol Sinica 2006; 27:41-49.
Benitez-King G, Anton-Tay F. Calmodulin mediates melatonin cytoskeletal effects. Experientia 1993; 49:635-641.
Benitez-King G, Anton-Tay F. Calmodulin and protein kinase C á are two Ca++ binding proteins that mediate intracellular melatonin signaling. En: Webb SM, Puig-Domingo M, Moller M, Pevet P (eds). Pineal gland update: 1996 From molecular mechanisms to clinical implications. New York: PJD Publications Limited; 1997; p.13-20.
Kumagai HE, Nishida E, Kotani S, Sakai H. On the mechanism of calmodulin- induced inhibition of microtubule assembly in vitro. J Biochem 1986; 99:521-525.
Huerto-Delgadillo L, Anton-Tay F, Benitez-King G. Effects of melatonin on microtubule assembly depend on hormone concentration: Role of melatonin as a calmodulin antagonist. J Pineal Res 1994; 17:55-62.
Murti KG, Kaur K, Goorha RM. Protein kinase C associates with intermediate filaments and stress fibers. Exp Cell Res 1992; 202:36-44.
Ando S, Tanabek K, Gonda Y, Sato C, Inagaki M. Domain and sequence specific phosphorylation of vimentin induced disassembly of the filament structure. Biochemistry 1989; 28:2974-2979.
Benitez-King G. PKC activation by melatonin modulates vimentin intermediate filament organization in N1E-115 cells. J Pineal Res 2000; 29:8-14.
Benítez-King G, Hernández ME, Tovar R, Ramírez G. Melatonin activates PKC alpha but not PKC epsilon in N1E-115 cells. Neurochem Int 2001; 39:95-102.
Glenney JR, Weber K. Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J Biol Chem 1980; 255:10551-10554.
Ramírez-Rodríguez G, Meza I, Hernández ME, Castillo A, Benítez-King G. Melatonin induced cyclic modulation of vectorial water transport in kidney derived MDCK cells. Kidney Int 2003; 63:1356-1364.
Ramírez-Rodríguez G, Ortíz-López L, Benítez-King G. Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rhoassociated kinase and protein kinase C. J Pineal Res 2007; 42:180-190.
Bellon A, Ortiz-Lopez L, Ramirez-Rodriguez G, Anton-Tay F, Benitez- King G. Melatonin induces neuritogenesis at early stages in N1E-115 cells through actin rearrangements via activation of protein kinase C and Rho-associated kinase. J Pineal Research 2007; 42:214-221.
Arendt T, Holzer M, Brúckner MK, Janke C, Gártner U. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer’s disease. Neuroscience 1998; 85: 1337-1340.
Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 1988; 256:283-290.
Lee J, Hong H, Im J, Byun H, Kim D. The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett 2000; 282:49-52.
Jiménez-Rubio G, Benítez-King G, Ortíz-López L. Melatonin elicits neuritogenesis and reverses tau hyperphosphorylation in N1E-115 neuroblastoma cells treated with okadaic acid. En: Fernández AJ (ed). Focus in Neuroblastoma Research. Hauppauge, NY: Nova Science Publishers; 2007; p.99-117.
Li XC, Wang ZF, Zhang JX, Wang Q, Wang JZ. Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol 2005; 510:25–30.
Zhu LQ, Wang SH, Ling ZQ, Wang DL, Wang JZ. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res 2004; 37:71-77.
Kong X, Li X, Cai Z, Yang N, Liu Y et al. Melatonin Regulates the Viability and Differentiation of Rat Midbrain Neural Stem Cells. Cell Mol Neurobiol 2007; 28:569-579.
Moriya T, Horie N, Mitome M, Shinohara K. Melatonin influences the proliferative and differentiative activity of neural stem cells. J Pineal Res 2007; 42:411-418.
Liu RY, Zhou JN, Van Heerikhuize J, Hoffman MA, Swaab DF et al. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon 4/4 genotype. J Clin Endocrinol Metab 1999; 84:323-327.
Brusco LI, Marquez M, Cardinali DP. Monozygotic twins Alzheimer’s Disease treated with melatonin: Case report. J Pineal Res 1998; 25:260-263.
Jean-Louis G, Zizi F, Von Gizycki H, Taub H. Effects of melatonin in two individuals with Alzheimer’s disease. Percept Mot Skills 1998; 87:331-339.
Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y et al. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and noncognitive functions in alzheimer type dementia. J Nippon Med Sch 2003; 70(4):334–341.
Brusco LI, Marquez M, Cardinali DP. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuroendocrinol Lett 2000; 21:39-42.