2007, Número 1
<< Anterior Siguiente >>
Salud Mental 2007; 30 (1)
Las bases neurales del proceso de enmascaramiento. Segunda parte
Salazar-Juárez A, Parra-Gámez L, Barbosa MS, Philippe Leff, Antón B
Idioma: Español
Referencias bibliográficas: 118
Paginas: 56-67
Archivo PDF: 196.85 Kb.
FRAGMENTO
Existen dos procesos que compiten por el control de la actividad locomotora de un organismo: un proceso inhibitorio que está relacionado con una iluminación brillante y un proceso estimulatorio relacionado con una iluminación muy tenue, debajo de 1 lux. A estos procesos se les denomina respectivamente enmascaramiento negativo y positivo. En 1988, Aschoff y von Goetz (8, 9) describieron al enmascaramiento positivo y negativo como el aumento y disminución de la actividad locomotora en respuesta a cambios en la iluminación. De tal manera, la luz no solamente sincroniza al sistema circadiano, sino que también ejerce efectos directos sobre los efectores (osciladores periféricos) que expresan a los ritmos circadianos, como son el efecto de la luz sobre la glándula pineal, que genera la reducción inmediata de la liberación de la melatonina, y la inhibición de la actividad locomotora en roedores nocturnos después de un pulso de luz en la noche. Esta respuesta directa de enmascaramiento anula el control del reloj biológico y genera un ajuste de fase apropiado e inmediato a las condiciones de iluminación (69, 103, 116). Estas dos respuestas de enmascaramiento a la luz son las más estudiadas, pero se han analizado de manera separada. Sin embargo, no se ha dado importancia al cuestionamiento de si estas respuestas pueden relacionarse entre sí, quizás como parte de una respuesta orquestada a la luz. Además, no se conoce si estas respuestas son mediadas por vías fotoreceptivas y substratos neurales comunes.
REFERENCIAS (EN ESTE ARTÍCULO)
AGUILAR-ROBLERO R, GARCIA-HERNANDEZ F, AGUILAR R, ARANKOWSKY-SANDOVAL G, DRUCKER- COLIN R: Suprachiasmatic nucleus transplants function as an endogenous oscillator only in constant darkness. Neurosci Lett, 69(1):47-52. 1986.
AGUILAR-ROBLERO R, DRUCKER-COLIN R: The role of the suprachiasmatic nuclei in the regulation of circadian rhythms in mammals. Boletin Estudios Medicos Biológicos, 35:35-51, 1987.
ALBERS HE, LYDIC R, MOORE-EDE MC. Entrainment and masking of circadian drinking rhythms in primates: influence of light intensity. Physiol Behav, 28(2):205-11, 1982.
ARENDT J, RAVAULT JP: Suppression of melatonin secretion in Ile-de-France rams by different light intensities. J Pineal Res, 5(3):245-50. 1988.
ARENDT J: Melatonin and the Mammalian Pineal Gland. Chapman and Hall, Londres, 1995.
ASCHOFF J: Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol, 25:11-28, 1960.
ASCHOFF J, VON GOETZ C: Circadian activity rhythms in squirrel monkeys: entrainment by temperature cycles. J Biol Rhythms, 1(2):91-9, 1986.
ASCHOFF J: Masking of circadian rhythms by zeitgebers as opposed to entrainment. Advances Bioscience, 73:149-161, 1988.
ASCHOFF J, VON GOETZ C: Masking of circadian activity rhythms in hamsters by darkness. J Comp Physiol [A], 162(4):559-62, 1988.
ASCHOFF J, VON GOETZ C: Masking of circadian activity rhythms in canaries by light and dark. J Biol Rhythms, 4(1):29-38, 1989.
ASCHOFF J: Masking and parametric effects of high-frequency light-dark cycles. Jpn J Physiol, 49(1):11-8, 1999.
BELENKY MA, SMERASKI CA, PROVENCIO I, SOLLARS PJ, PICKARD GE: Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol, 460(3):380-93, 2003.
BENSHOFF HM, BRAINARD GC, ROLLAG MD, LYNCH GR: Suppression of pineal melatonin in Peromyscus leucopus by different monochromatic wavelengths of visible and near-ultraviolet light (UV-A). Brain Res, 420(2):397-402, 1987.
BINKLEY S, MOSHER K: Direct and circadian control of sparrow behavior by light and dark. Physiol Behav, 35(5):785-97, 1985.
BOER GJ, GRIFFIOEN HA, DUINDAM H, VAN DER WOUDE TP, RIETVELD WJ: Light/dark-induced effects on behavioural rhythms in suprachiasmatic nucleus lesioned rats irrespective of the presence of functional suprachiasmatic nucleus brain implants. J Interdiscipl Cycle Res, 24(2):118-136, 1993.
BORBELY AA: Effects of light on sleep and activity rhythms. Prog Neurobiol, 10(1):1-31, 1978.
BRAINARD GC, RICHARDSON BA, KING TS, REITER RJ: The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain Res, 294(2):333-9, 1984.
CARDINALI DP, LARIN F, WURTMAN RJ: Action spectra for effects of light on hydroxyindole-o-methyl transferases in rat pineal, retina and harderian gland. Endocrinology, 91(4):877-86, 1972.
CIPOLLA-NETO J, BARTOL I, SERAPHIM PM, AFECHE SC y cols.: The effects of lesions of the thalamic intergeniculate leaflet on the pineal metabolism. Brain Res, 691(1-2):133-41, 1995.
DALY M, BEHRENDS PR, WILSON MI: Activity patterns of Kangaroo Rats- Granivores in a desert habitat. En: Activity Patterns in Smalll Mammalians. Halle S, Stenseth N (eds.). Springer-Verlang, 145-158, Berlín, 2000.
DECOURSEY PJ, KRULAS JR, MELE G, HOLLEY DC: Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav, 62(5):1099-108, 1997.
DECOURSEY PJ, KRULAS JR: Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study. J Biol Rhythms, 13(3):229-44, 1998.
DECOURSEY PJ, WALKER JK, SMITH SA: A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol [A], 186(2):169-80, 2000.
DE LA IGLESIA HO, SCHWARTZ WJ: A subpopulation of efferent neurons in the mouse suprachiasmatic nucleus is also light responsive. Neuroreport, 13(6):857-60, 2002.
DEVESON SL, ARENDT J, FORSYTH IA: Sensitivity of goats to a light pulse during the night as assessed by suppression of melatonin concentrations in the plasma. J Pineal Res, 8(2):169-77, 1990.
DOI M, YUJNOVSKY I, HIRAYAMA J, MALERBA M y cols.: Impaired light masking in dopamine D2 receptor-null mice. Nat Neurosci, 9(6):732-734, 2006.
EBIHARA S, TSUJI K: Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav, 24(3):523-7, 1980.
EDELSTEIN K, AMIR S: Non-photic manipulations induce expression of Fos protein in the suprachiasmatic nucleus and intergeniculate leaflet in the rat. Brain Res, 690(2):254-8, 1995.
EDELSTEIN K, MROSOVSKY N: Behavioral responses to light in mice with dorsal lateral geniculate lesions. Brain Res, 918(1-2):107-12, 2001.
ERKERT HG: Der Einfluss des Mondlichtes auf die Aktivitatsperiodik nachtaktiver saugetiere. Oecologia Berlin, 14:269- 287, 1974.
ERKERT HG, GROBER J: Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol (Basel), 47(4):171-88, 1986.
FOSTER RG, PROVENCIO I, HUDSON D, FISKE S, DE GRIP W, MENAKER M: Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol [A], 169(1):39-50, 1991.
FOSTER RG. MENAKER M: Circadian photoreception in mammals and others vertebrales. En: Wetterberg L (ed.). Light and Biological R4hythms in Man. Pergamon Press, P.73-91, Oxford, 1993.
FREEDMAN MS, LUCAS RJ, SONI B, VON SCHANTZ M y cols.: Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 284(5413):502-4, 1999.
FRY FEJ: Effects of the Environment on Animal Activity. University of Toronto Studies. Biological series. No 55. University of Toronto Press. P.1-62, Toronto, 1947.
FULLER CA, LYDIC R, SULZMAN FM, ALBERS HE y cols.: Circadian rhythm of body temperature persists after suprachiasmatic lesions in the squirrel monkey. Am J Physiol, 241(5):R385-91, 1981.
GANDER PH, MOORE-EDE MC: Light-dark masking of circadian temperature and activity rhythms in squirrel monkeys. Am J Physiol, 245(6):R927-34, 1983.
GERM M, TOMIOKA K: Circadian period modulation and masking effects induced by repetitive light pulses in locomotor rhythms of the Cricket, Gryllus bimaculatus. Zool Sci, 15:309-316, 1988.
HARRINGTON ME, RUSAK B: Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster. Vis Neurosci, 2(4):367-75, 1989.
HARRINGTON ME: The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev, 21(5):705- 27, 1997.
HATTAR S, LIAO HW, TAKAO M, BERSON DM, YAU KW: Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295(5557):1065-70, 2002.
HATTAR S, LUCAS RJ, MROSOVSKY N, THOMPSON S y cols.: Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424(6944):76-81, 2003.
IBUKA N, INOUYE SI, KAWAMURA H: Analysis of sleepwakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res, 122(1):33-47. 1977.
ILLNEROVA H, VANECEK J: Response of rat pineal serotonin N-acetyltransferase to one min light pulse at different night times. Brain Res, 167(2):431-4, 1979.
ILLNEROVA H, VANECEK J, KRECEK J, WETTERBERG L, SAAF J: Effect of one minute exposure to light at night on rat pineal serotonin N-acetyltransferase and melatonin. J Neurochem, 32(2):673-5, 1979.
KAS MJ, EDGAR DM: A nonphotic stimulus inverts the diurnal-nocturnal phase preference in Octodon degus. J Neurosci, 19(1):328-33, 1999.
KATONA C, SMALE L: Wheel-running rhythms in Arvicanthis niloticus. Physiol Behav, 61(3):365-72, 1997.
KENNAWAY DJ, ROWE SA: Impact of light pulses on 6- sulphatoxymelatonin rhythms in rats. J Pineal Res, 16(2):65-72, 1994.
KING DP, ZHAO Y, SANGORAM AM, WILSBACHER LD y cols. Positional cloning of the mouse circadian clock gene. Cell, 89(4):641-53, 1997.
KLEIN DC, WELLER JL, MOORE RY: Melatonin metabolism: neural regulation of pineal serotonin: acetyl coenzyme A N-acetyltransferase activity. Proc Natl Acad Sci USA, 68(12):3107-10, 1971.
KLEIN DC, WELLER JL: Rapid light-induced decrease in pineal serotonin N-Acetyl transferase Activity. Science, 177(48)532-533, 1972.
KLEIN DC, MOORE RY: Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res, 174(2):245-62, 1979.
KLEIN DC, MOORE RY, REPPERT SM: Suprachiasmatic Nuclei: The Minds Clock. Oxford University Press, Oxford, 1991.
KRAMER A, YANG FC, SNODGRASS P, LI X y cols.: Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science, 294(5551):2511-5, 2001.
KRONAUER RE, CZEISLER CA, PILATO SF, MOORE EDE MC, WEITZMAN ED: Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol, 242:R3-R17, 1982.
LEWY AJ, WEHR TA, GOODWIN FK, NEWSOME DA, MARKEY SP: Light suppresses melatonin secretion in humans. Science. 210(4475):1267-9, 1980.
LI X, GILBERT J, DAVIS FC: Disruption of masking by hypothalamic lesions in Syrian hamsters. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 191(1):23-30, 2005.
LUCAS RJ, FOSTER RG: Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin. Endocrinology, 140(4):1520-4, 1999.
LUCAS RJ, FREEDMAN MS, MUNOZ M, GARCIA-FERNANDEZ JM, FOSTER RG: Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science, 284(5413):505-7, 1999.
LUCAS RJ, HATTAR S, TAKAO M, BERSON DM, FOSTER RG, YAU KW: Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 299(5604):245-7, 2003.
MILLER AM, OBERMEYER WH, BEHAN M, BENCA RM: The superior colliculus-pretectum mediates the direct effects of light on sleep. Proc Natl Acad Sci USA, 95(15):8957-62, 1998.
MILLER AM, MILLER RB, OBERMEYER WH, BEHAN M, BENCA RM: The pretectum mediates rapid eye movement sleep regulation by light. Behav Neurosci, 113(4):755-65, 1999.
MINORS DS, WATERHOUSE JM: Masking and biological rhythms. Chronobiol Int, 6(1):1-2, 1989.
MINORS DS, WATERHOUSE JM: Masking in humans: the problem and some attempts to solve it. Chronobiol Int. 6(1):29-53, 1989.
MISTLBERGER RE: Nonphotic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters. Behav Neurosci, 106(1):192-202, 1992.
MOORE RY, LENN NJ: A retinohypothalamic projection in the rat. J Comp Neurol, 146(1):1-14, 1972.
MOORE RY, CARD JP: Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol, 344(3):403-30, 1994.
MOORE RY, SPEH JC, LEAK RK: Suprachiasmatic nucleus organization. Cell Tissue Res, 309(1):89-98, 2002.
MOORE-EDE MC, ZULZMAN FM, FULLER CA: The Clocks That Time Us. Harvard University Press, Cambridge, 1982.
MORIN LP: The Circadian Visual System. Brain Res Rev, 67:102-127, 1994.
MORIN LP, BLANCHARD JH: Neuropeptide Y and enkephalin immunoreactivity in retinorecipient nuclei of the hamster pretectum and thalamus. Vis Neurosci, 14(4):765-77, 1997.
MROSOVSKY N: Nonphotic enhancement of adjustment to new light-dark cycles: masking interpretation discounted. J Biol Rhythms, 4(3):365-70, 1989.
MROSOVSKY N: In praise of masking: behavioural responses of retinally degenerate mice to dim light. Chronobiol Int, 11(6):343-8, 1994.
MROSOVSKY N, HAMPTON RR: Spatial responses to light in mice with severe retinal degeneration. Neurosci Lett, 222(3):204-6, 1997.
MROSOVSKY N, FOSTER RG, SALMON PA: Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol [A], 184(4):423-8, 1999.
MROSOVSKY N: Masking: history, definitions, and measurement. Chronobiol Int, 16(4):415-29, 1999.
MROSOVSKY N, SALMON PA, FOSTER RG, MCCALL MA: Responses to light after retinal degeneration. Vision Res, 40(6):575-8, 2000.
MROSOVSKY N, LUCAS RJ, FOSTER RG: Persistence of masking responses to light in mice lacking rods and cones. J Biol Rhythms, 16(6):585-8, 2001.
MROSOVSKY N: Further characterization of the phenotype of mCry1/mCry2-deficient mice. Chronobiol Int, 18(4):613-25, 2001.
MROSOVSKY N, SALMON PA: Learned arbitrary responses to light in mice without rods or cones. Naturwissenschaften, 89(11):525-7, 2002.
MROSOVSKY N, HATTAR S: Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int, 20(6):989- 99, 2003.
MROSOVSKY N, HATTAR S: Diurnal mice (Mus musculus) and other examples of temporal niche switching. J Comp Physiol Neuroethol Sens Neural Behav Physiol, 191(11):1011-24, 2005.
MROSOVSKY N, REDLIN U, ROBERTS RB, THREADGILL DW: Masking in waved-2 mice: EGF receptor control of locomotion questioned. Chronobiol Int, 22(6):963-74, 2005.
PAGE TL: Masking in invertebrates. Chronobiol Int, 6(1):3-11, 1989.
PANDA S, SATO TK, CASTRUCCI AM, ROLLAG MD y cols.: Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 298(5601):2213-6, 2002.
PICKARD GE: Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett, 55(2):211-7, 1985.
PICKARD GE, SOLLARS PJ, RINCHIK EM, NOLAN PM, BUCAN M: Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels. Brain Res, 705(1-2):255-66, 1995.
PROVENCIO I, WONG S, LEDERMAN AB, ARGAMASO SM, FOSTER RG: Visual and circadian responses to light in aged retinally degenerate mice. Vision Res, 34(14):1799-806, 1994.
PROVENCIO I, COOPER HM, FOSTER RG: Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol, 395(4):417-39. 1998.
PROVENCIO I, ROLLAG MD, CASTRUCCI AM: Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature, 415(6871):493, 2002.
RAJARATHAM SM, REDMAN JR: Social contact synchronizes free-running activity rhythms of diurnal palm squirrels. Physiol Behav, 66(1):21-6, 1999.
REDLIN U, MROSOVSKY N: Masking of locomotor activity in hamsters. J Comp Physiol [A], 184(4):429-37, 1999.
REDLIN U, MROSOVSKY N: Masking by light in hamsters with SCN lesions. J Comp Physiol [A], 184(4):439-48, 1999.
REDLIN U, VRANG N, MROSOVSKY N: Enhanced masking response to light in hamsters with IGL lesions. J Comp Physiol [A], 184(4):449-56, 1999.
REDLIN U: Neural basis and biological function of masking by light in mammals: suppression of melatonin and locomotor activity. Chronobiol Int, 18(5):737-58, 2001.
REDLIN U, COOPER HM, MROSOVSKY N: Increased masking response to light after ablation of the visual cortex in mice. Brain Res, 965(1-2):1-8, 2003.
REDLIN U, MROSOVSKY N: Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): the importance of masking. J Biol Rhythms, 19(1):58-67, 2004.
REDLIN U, HATTAR S, MROSOVSKY N: The circadian Clock mutant mouse: impaired masking response to light. J Comp Physiol Neuroethol Sens Neural Behav Physiol, 191(1):51-9, 2005.
REITER RJ, HURLBUT EC, BRAINARD GC, STEINLECHNER S, RICHARDSON BA: Influence of light irradiance on hydroxyindole-O-methyltransferase activity, serotonin- N-acetyltransferase activity, and radioimmunoassayable melatonin levels in the pineal gland of the diurnally active Richardson’s ground squirrel. Brain Res, 288(1-2):151-7, 1983.
100.RENSING L: Is «masking» an appropriate term? Chronobiol Int, 6(4):297-300, 1989.
101.REPPERT SM, WEAVER DR: Coordination of circadian timing in mammals. Nature, 418(6901):935-41, 2002.
102.REPPERT SM, WEAVER DR: Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol, 63:647-76, 2001.
103.RIETVELD WJ, MINORS DS, WATERHOUSE JM: Circadian rhythms and masking: an overview. Chronobiol Int, 10(4):306-12, 1993.
104.RUBY NF, BRENNAN TJ, XIE X, CAO V y cols.: Role of melanopsin in circadian responses to light. Science, 298(5601):2211-3, 2002.
105.SATINOFF E, PROSSER RA: Suprachiasmatic nuclear lesions eliminate circadian rhythms of drinking and activity, but not of body temperature, in male rats. J Biol Rhythms, 3(1):1-22, 1988.
106.SCALIA F: The termination of retinal axons in the pretectal region of mammals. J Comp Neurol, 145(2):223-57, 1972.
107.SELBY CP, THOMPSON C, SCHMITZ TM, VAN GELDER RN, SANCAR A: Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc Natl Acad Sci USA, 97(26):14697-702, 2000.
108.SHEARMAN LP, WEAVER DR; Photic induction of Period gene expression is reduced in Clock mutant mice. Neuroreport, 10(3):613-8, 1999.
109.SHEARMAN LP, SRIRAM S, WEAVER DR, MAYWOOD ES y cols.: Interacting molecular loops in the mammalian circadian clock. Science, 288(5468):1013-9, 2000.
110.SISK CL, STEPHAN FK: Central visual pathways and the distribution of sleep in 24-hr and 1-hr light-dark cycles. Physiol Behav, 29(2):231-9, 1982.
111.SONG X RUSAK B: Acute effects of light on body temperature and activity in Syrian hamsters: influence of circadian phase. Am J Physiol, 278(5):R1369-80, 2000.
SPOELSTRA K, OKLEJEWICZ M, DAAN S. Restoration of self-sustained circadian rhythmicity by the mutant clock allele in mice in constant illumination. J Biol Rhythms, 17(6):520-5, 2002.
113.STEPHAN FK, ZUCKER I: Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA, 69(6):1583-6, 1972.
114.VITATERNA MH, KING DP, CHANG AM, KORNHAUSER JM y cols.: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 264(5159):719-25, 1994.
115.WATERHOUSE J, MINORS D: Masking and entrainment. Advances Bioscience, 73:163-171, 1988.
116.WATERHOUSE J, MINORS D, AKERSTEDT T, HUME K, KERKHOF G: Circadian rhythm adjustment: difficulties in assessment caused by masking. Pathol Biol (París), 44(3):205-7, 1996.
117.WATTS AG, SWANSON LW, SANCHEZ-WATTS G: Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol, 258(2):204-29, 1987.
118.WATTS AG, SWANSON LW: Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol, 258(2):230-52, 1987.