2007, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2007; 143 (5)
II. Participación del óxido nítrico en la fisiopatología cardiovascular
Pastelín-Hemández G, Valle-Mondragón L, Tenorio-López FA, Torres-Narváez JC
Idioma: Español
Referencias bibliográficas: 21
Paginas: 406-408
Archivo PDF: 62.93 Kb.
RESUMEN
El óxido nítrico o monóxido de nitrógeno como compuesto químico fue descrito desde el siglo XVIII. Su importancia en biología, y en especial en medicina, tiene lugar a partir de la década de 1980. El óxido nítrico armoniza las funciones de varios tipos de células y tejidos, para dar lugar a una concertación de respuestas fisiológicas particularmente importantes en el sistema cardiovascular. Las propiedades químicas y biológicas del óxido nítrico lo convierten en un poderoso mediador paracrino y autocrino con gran capacidad para actuar como modulador local de la presión arterial, del flujo sanguíneo, de la hemostasis y de múltiples acciones de gran importancia fisiopatológica como la hipertensión arterial sistémica. Por estas razones, el conocimiento de la biología del óxido nítrico ha permitido el diseño de estrategias terapéuticas en el aparato cardiovascular. La regulación proteica de las sintasas de óxido nítrico configura un hallazgo reciente de importancia en la comprensión de la disfunción endotelial y en el diseño de nuevos recursos terapéuticos.
REFERENCIAS (EN ESTE ARTÍCULO)
Brown TL, LeMay HE, Bursten BE. Química: la ciencia central. 5ª ed. México: Prentice-Hall Hispanoamericana; 1993. pp. 889-898.
Butler IS, Harrod JF. Química inorgánica: principios y aplicaciones. EE.UU.: Addison-Wesley Iberoamericana; 1992. p. 315.
Wandehenne D, Pugin A, Klessig DF, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 2001;6(4):177-183.
Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, et al. Mechanisms of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 1981;218:739-749.
Furchgott RF, Zawadzki JV. The obligatory role of endotelial cells in therelaxation of arterial smooth muscle to acetylcholine. Nature 1980;288:373- 337.
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987a;84:9265-9269.
Vallance P, Collier J, Moncada S. Effects of endothellium derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989;2:997-1000.
Drexler H. Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis 1997;39:287-324.
Brunner H, Cockroft JR, Deanfield J, Donald A, Ferranini E, Halcox J, et al. Endothelial function and dysfunction. Part II. Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of European Society of Hypertension. J Hypertens 2005;23:233-246.
Perticone F, Sciaqua A, Maio R, Perticone M, Maas R, Boyer RH, et al. Asymetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 2005;46:518-523.
Peter L, Gross MD, William C, Aird MD. The endothelium and thrombosis. Sem Thromb Haemost 2000;26:463-478.
Vanhoutte PM, Félétou M, Boulanger CM, Höffner U, Rubanyi GM. Existence of multiple endothelium-derived relaxing factors. In: Vanhoutte PM, ed. Endothelium-derived hyperpolarizing factor. The Netherlands: Harwood Academic Publishers; 1996. pp. 1-10.
Jackson WF. Ion channels and vascular tone. Hypertension 2000;35:173-178.
Popp R, Fleming I, Busse R. Pulsatile stretch in coronary arteries elicits release of endothelium derived hyperpolarizing factor. Circ Res 1998;82:696-703.
Ando J, Kamiya A. Blood flor and vascular endotelial cell function. Front Med Biol Eng 1993;5:245-264.
Heijenen Hfg, Waaijenborg S, Crapo JD, Bowler RP, Ackerman JN, Slot JW. Colocalization of eNOS and the catalytic subunit uf PKA in endotelial cell junctios: S clue for regulated NO production. J Histochem Cytochem 2004:52:1277-1285.
Suárez J, Torres C, Sánchez L, del Valle L, Pastelín G. Flow stimulates nitric oxide release in Guinea pig heart: role of stretch-activated ion channels. Biochem Biophys Res Comm 1999;261:6-9.
Simionescu M. Biochemical and functional differentiation of the endotelial cell plasma membrane: from microdomain to specific molecules. In: Pastelín G, Rubio R, Ceballos G, Suárez J, Sánchez Torres G, eds. Functionality of the endothelium in health and diseased states: a comprehensive review. México: Editora del Gobierno del Estado de Veracruz; 1994. pp. 19-40.
Gratton JP, Bernatchez P, Sessa W. Caveolae and caveolins in the cardiovascular system. Circ Res 2004;94:1408-1417.
Minsahall RD, Sessa W, Stan R, Anderson R, Malik A. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 2003;285:L1179-L1183.
Roe SM, Prodromou, Q’Bbrien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumour antibiotics radidicol and geldanamycin. J Med Chem 1999;42:260-266.