2007, Número 4
<< Anterior Siguiente >>
Gac Med Mex 2007; 143 (4)
Evaluación del corregistro de imágenes de resonancia magnética y tomografía por emisión de positrones con 2-desoxy-2-flúor-d-glucosa marcada con flúor-18 en pacientes con patología tumoral cerebral
Ortega-López N, Mendoza-Vásquez RG, Adame-Ocampo G, Alexanderson-Rosas E, Cayetano-Alcaraz AA, Ángel-Celis M
Idioma: Español
Referencias bibliográficas: 30
Paginas: 309-316
Archivo PDF: 185.44 Kb.
RESUMEN
Objetivo: Determinar la efectividad del co-registro de imágenes PET/RM (tomografía de emisión de positrones y resonancia magnética) en el diagnóstico de recidiva tumoral vs.. radionecrosis en pacientes con patología tumoral cerebral primaria previamente tratados.
Material y métodos: El diagnóstico de tumor cerebral se determinó por RM e histopatología. Después de 3 a 5 meses postratamiento se realizó RM y PET como parte del seguimiento. El análisis de dichas imágenes se hizo de manera visual y semicuantitativa mediante la obtención de un índice de captación de
18F-FDG de tejido tumoral/ tejido cerebral sano.
Resultados: Se estudiaron 57 pacientes; un total de 37 gliomas astrocíticos, 9 gliomas mixtos, 5 tumores embrionarios, 1 tumor meníngeo y 1 tumor oligodendroglial . Todas las imágenes de RM presentaban áreas de reforzamiento, dejando sospecha entre radionecrosis o viabilidad tumoral; con el co-registro PET/RM se diagnosticaron 21 estudios negativos (30 %) y 36 positivos (70 %). El índice tejido tumoral/tejido cerebral sano se correlacionó adecuadamente con los resultados visuales obtenidos.
Conclusión: La RM sobreestima el área tumoral a valorar. La presencia de la actividad metabólica analizada mediante PET sobre las áreas de reforzamiento por RM permite determinar la presencia de viabilidad tumoral. Esto aumenta la certeza diagnóstica de ambas técnicas de imagen.
REFERENCIAS (EN ESTE ARTÍCULO)
Arraez M.A, Herruzo I, Acha T, Benavides M. Tumores del sistema nervioso central en el adulto y en la infancia: Enfoque multidisciplinario neuro-oncológico. Madrid, España: Nova Sidonia Ed.;2003.
Radhakrishnan K and Nicolaas I. Epidemiology in brain tumors. En: Morantz RA and Morantz J. Eds. Brain Tumors: A comprehensive text. New York: Marcel Dekker Ed, 1994:1-5.
Scally LT, Lin C, Beriwal S, Brady L. Central Nervous system tumors. In: Perez C, Brady L, Halperin EC y Schimidt-Ullrich RK eds. Principles and practice of radiation oncology. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2004:791-838
Jiménez MM, Velásquez PL. Morbilidad en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez” 1995-2001. Gac. Méd. Méx 2004;140:12-15.
Kjaer L, Ring Thomsen C, et al. Texture analisis in quantitative MR imaging: Tissue characterisation of normal brain and intracraneal tumors at 1.5 T. Acta Radiol 1995;36:127-135.
Matthews M, Wylezinska M, Cadoux-Hudson T. Novel approaches to imaging brain tumors. Hematology/oncology Clinics of North America 2001;15:1-13.
Tovi M, Lilja A, Bergstrom M, et al. Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and PET. Acta Radiol 1990;31:417-428.
Cherry RS and Phelps ME. Imaging brain function with positron emmision tomography. L.A,California. Academic Press,1996.
Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus R, et al. 11C Methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998;50:1316-1323.
Pirrote B, Golman S, Massager N, Philippe D, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-Methionine for PET guided stereotactic brain biopsy of gliomas. J Nucl Med 2004;45:1293-1298.
Key-Chung J, Kyeong K Y, Kim Seok –ki, Lee YJ, Paek S, Yeo JS, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med 2002;29:176-182.
Koike I, Ohmura M, Hata M, Takahashi N, Oka T, Ogino I, et al. FDG – PET scanning after radiation can predict tumor regrowth three months later. Int J Radiation Oncology Biol Phys. 2003;57:1231-1238.
Hsiao CH, Kao T, Fang YH, Wang JK, Guo WY, Chao LH, et al. System Integration and DICOM image creation for PET-MR fusion. Journal of Digital Imaging 2005;18:28-36.
Alyafei S, Inoue T, Zhang H, Ahmed K, Oriuchi N, Sato N, et al. Image fusion system using PACS for MRI, CT and PET images. Clinical Positron Imaging 1999;2:137-143.
Stefan J, Ashburner J, Poline JB, Friston K. MRI and PET Coregistration- A cross validation of statistical parametric mapping and automated image registration. Neuroimage 1997;5:271-279.
Barra Vincent and Boire Jean-Yves. A general framework for the fusion of anatomical and functional medical images. Neuroimage 2001;13: 410-424.
Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 2002;61:215-225.
Bartenstein P, Asenbaum S, Catafau A, Halldin C, Pilowski L, Pupi A, et al. European Association of Nuclear Medicine Procedure Guidelines for Brain Imaging using 18F-FDG. Eur J Nucl Med 2002;29:BP43-BP48
Studholme C, Hill DL. 3D Rview program. (Online). Disponible en: http:/www.collinstudholme.net/sofware/rview/manual/rvman.htm.
Studholme C, DL, Hawkes DJ. An overlap invariant entropy measure of 3D medical imagen alignment. Pattem Recognition 1999;32:71-86.
Borgwardt L, Hojgaard L, Carstensen H, Laursen H, Nowak M, Thomsen C, et al. Increased Fluorine-18-2Fluoro-2-Doexy-D-Glucose (FDG) Uptake in chilhood CNS tumors is correlated with malignancy grade: A study with FDG Positron Emission Tomography/Magnetic Resonance Imaging Coregistration and Image fusion. J Clin Oncol 2005;23:3030-3037.
Chao ST, Suh JH, Raja, et al. The sensitivity and specificity of FDG PET in distinguising recurrent brain tumor from radionecrosis in patientes treated with stereotactic radiosurgery. Int J Cancer 2001;96:191-197.
Hustinx R, Alavi A. SPECT and PET imaging of brain tumors. Neuroimaging Clin N Am 1999;9:751-766.
Thiel A, Pietrzy U, Sturm V, et al. Enhanced accuracy in diferential diagnosis of radiation necrosis by positron emission tomography- magnetic resonance imaging co-registration: technical case report. Neurosurgery 2000;46:232-234.
Faulhaber PF, Nelson AD, Mehta L, O’Donnell JK. The fusion of anatomic and physiologic tomographic images to enhance accurate interpretation. Clinical Positron Imaging 2000;3:178.
Lee JK, Liu RS, Shiang HR, Pan DHC. Usefulness of semi-cuantitative FDGPET in the prediction of brain tumor treatment response to gamma knife radiosurgery. Journal of Computed Assisted Tomography 2003;27:525-529.
Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma mutiforme: insight from PET and MR fusion image study. J Neurol Neurosurg Psychiatry 2004;75:1457-1462.
McElroy DP, Saveliev V, Reznik A, Rowlands JA, et al. Evaluation of silicon photomultipliers: A promising new detector for MR compatible PET. Nuclear Instruments and Methods in Physics Research 2007;571:106-109.
Woody C, Schlyer D, Vaska P, Tomasi D, Solis-Najera, Rooney, et al. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph. Nuclear Instruments and Methods in Physics Research Section A 2007;5H:102-105.
Raylman RR, Majewski S, Kross B, Lemieux SK, S. Sendhil Velan, Popov V, et al. Initial tests of a prototype MRI-compatible PET imager. Nuclear Instruments and Methods in Physics Research Section A 2006;569:306-309.