2005, Número 1
Fisiopatología de la lesión medular. Revisión de literatura
Caballero CS, Nieto-Sampedro M.
Idioma: Español/Inglés
Referencias bibliográficas: 136
Paginas: 75-86
Archivo PDF: 604.09 Kb.
RESUMEN
Se presenta la descripción de los efectos
fisiopatólogicos que ocurren en la lesión medular
por trauma y que inciden en los procesos moleculares que desencadenan muerte neuronal
primaria y secundaria. Se hace énfasis en los mecanismos moleculares y celulares que impiden
la regeneración axonal en el sistema nervioso central. La finalidad de esta revisión es acercar
al médico veterinario al conocimiento a fondo sobre las lesiones medulares, para atenderlas
desde sus bases moleculares y aprovechar la información que brinda la investigación básica.
REFERENCIAS (EN ESTE ARTÍCULO)
1.David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981;214: 931-933.
2.Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev1996; 76: 319-370.
3.Nieto-Sampedro M. Neurite outgrowth inhibitors in gliotic tissue. Adv Exp Med Biol 1999; 468:207-224.
4.Bandtlow CE, Schwab ME. NI/35250/Nogo-A: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fi bres in the adult vertebrate
CNS. Glia 2000; 29:175-181.
5.Oliver JE, Lorenz MD. Handbook of Veterinary Neurology. 2nd ed., Philadelphia, W.B. Saunders CO,1997.
6.Dusart I, Schwab ME. Secondary cell death and inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 1994; 6: 712-724.
7.Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991; 75: 15-26.
8.Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE. Impared mitochondrial function, oxidative stress and alterated antioxidant enzyme activities following
a traumatic spinal cord injury. Brain Res 1997; 765:283-290.
9.Lee YB, Shih K, Bao P, Ghirnikar RS, Eng LF. Cytokine chemoquine expression in contused rat spinal cord.Neurocherm Int 2000; 36: 417-425.
10.Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ2002; 26:238-355.
11.Balentine JD, Spector M. Calcifi cation of axons in experimental spinal cord trauma. Ann Neurol 1977; 2:520-523.
12.Young W, Koreh I. Potassium and calcium changes in injured spinal cords. Brain Res 1986; 365: 42-53.
13.Taoka Y, Okiyama K. Spinal cord injury in the rat. Prog Neurobiol 1998; 56: 341-358.
14.Lotan M, Solomon A, Ben-Bassta S, Schwarts M.Cytokines modulate the infl ammatory response and change permissiveness to neuronal adhesion in injured mammal nervous system. Exp Neurol 1994; 126:284-290.
15.Fransen R, Schoenen J, Leprince P, Joosten E,Moonen G, Martin D. Effects of macrophage
transplantation in the injured rat spinal cord: a combined immunocytochemical and biochemical study.J Neurosci Res 1998; 51: 316-327.
16.Girardi FP, Khan SN, Cammisa FP, Blanck T. J. J.Advances and Strategies for Spinal Cord Regeneration.Orthop Clin North America, 2000: 31: 465-472.
17.Bartholdi D, Schwab ME. Expression of proinflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: anhybridisation study. Eur J Neurosci 1997; 9: 1422-1438.
18.Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelinassociated neurite growth inhibitors. Nature 1990;
19.Schachner M, Bartsch U. Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) information and maintenance of myelin. Glia 2000; 29:154-165.
20.Filbin MT. The muddle with MAG. Mol Cell Neurosci 1996; 8:84-92.
21.Tang S, Woodhal RW, Shen YJ, deBellard ME, Saffell JL,Doherty P, et al. Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration. Mol
Cell NeuroSci 1997; 9:333-346.
22.Feiner L, Koppel AM, Kobayashi H, Raper JA. Secreted chick semaphorines bind recombinant neurophilin with similar affi nities but bind different subsets on
neurons in situ. Neuron 1997; 19:539-545.
23.Wang KH, Brose K, Arnold D, Kidd T, Goodman CS, Henzel W, et al. Biochemical purifi cation of amammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 1999;96:771-784.
24.Taylor J, Pesheva P, Schachner M. Infl uence of janusin and tenascin on growth cone behaviour in vitro. J Neurosci Res 1993; 35: 347-62.
25.Bovolenta P, Wandosell F, Nieto-Sampedro M.Characterization of a neurite outgrowth inhibitor expressed after CNS injury. Eur J Neurosci 1993; 5:454-465.
26.Bovolenta P, Fernaud-Espinosa I, Mendez-Otero R,Nieto-Sampedro, M. Neurite outgrowth inhibitor of gliotic brain tissue. Mode of action and cellular localization, studied with specific monoclonalantibodies. Eur J Neurosci 1997; 9: 977-989.
27.Canning DR, Hoke A, Malemud CJ, Silver J. A potent inhibitor of neurite outgrowth that predominates in the extracellular matrix of reactive astrocytes. Int J Dev Neurosci 1996; 14: 153-175.
28.Nieto-Sampedro M. Reparación del trauma medular.Bol Soc Esp Neuroci 2001; 12: 2-15.
29.Bligth AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelinization by Schwann cells. J Neurol
30.Blight AR. Morphometric analysis of blood vessels in chronic experimental spinal cord injury:hypervascularity and recovery of function. J NeurolSci 1991; 106:158-174.
31.Risling MK, Fried H, Linda T, Carlsted T, CulheimS. Regrowth of motor axons following spinal cord lesions: distribution of laminin and collagen in the CNS scar tissue. Brain Res Bull 1993; 30: 405-414.
32.Means ED, Anderson DK. Neuronophagia by leukocites in experimental spinal cord injury. J Neuropathol Exp Neurol 1983; 42:707-719.
33.McTigue DM, Tani M, Krivacic K, Chernosky A, Kelner GS, Maciejewski D. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 1998; 53: 358-376.
34.Moreno-Flores M.T, Bovolenta, P, Nieto-Sampedro M.Polymorphonuclear leukocytes in brain parenchyma after injury and their interaction with purifi ed
astrocytes in culture. Glia 1992; 7: 146-157.
35.Perry VH, Brown MC, Gordon S. The macrophage response and inflammation in the central nervous system. Trends Neurosci 1993; 16: 268-273.
36.Anderson PB, Perry BH, Gordon S. The kinetic and morphological characteristics of the macrofaguemicroglial response to kainic acid-induced neuronal degeneration. Neuroscience 1991; 42: 202-214.
37.Streit WJ, Graeber MB, Kreutzberg GW. Functional plasticity of microglia: a review. Glia 1988;1:301-307.
38.Barlett B, Holets VR, Bates ML, Clarke TS, Watson BD. Characterization of photochemically induced spinalcord injury in the rat by light and electron microscopy.
Exp. Neurol 1994; 127:76-93.
39.Wang CX, Oslochowka JA, Wrathall JR. Increase of interleukin-1ß mRNA and protein in the spinal cord following experimental traumatic injury in the rat.
Brain Res 1997; 59: 190-196.
40.Popovich PG, Stokes BT and Whitacre CC. Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central
nervous system. J Neurosci Res 1996; 45: 349-363.
41.Griffi ths IR, McCulloch MC. Nerve fi bres in spinal cord impact injures. JNeurol Sci 1983; 58: 335-349.
42.Bligth AR, Decrescito V. Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons.
Neuroscience 1986; 19:321-346.
43.Morin-Richau C, Felblum S, Privat A. Astrocytes and oligodendrocytes reactions after total section of the rat spinal cord. Brian Res 1998; 783: 85-101.
44.Kotter MR, Setzu A, Fraser JS, vanRooijen N, Franklin RJM. Macrophage depletion impairs oligodendrocyte remyelinization following lysolecithin-induced demyelinization.
45.Bligth AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelinization by Schwann cells. J.Neurol
46.Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol
47.Li Y, Raisman G. Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord.J Neurosci 1994; 14: 4050-4063.
48.Houle JD, YeJH. Changes occur in the ability to promote axonal regeneration as the post-injury period increases. Neuroreport 1997; 8: 751-755.
49.Bhave SV, Ghoda L and Hoffman PL. Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action.Neurosci 1999; 19: 3277-3286.
50.Wrathall JR, Choiniere D, Teng YD. Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainite antagonist NBQX. J Neurosci 1994; 14: 6598-6607.
51.Bartholdi D, Schwab ME. Methylpresnisolone inhibits early infl ammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res 1995; 672: 177-186.
52.Caroni P, Schwab ME. Antibody against myelin associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter.
53.Caballero Ch S. Producción de células similares a la glía de Schwann a partir de células madre neurales,para la reparación de lesiones medulares en rata (tesis
doctoral). Madrid, España. Universidad Autónoma de Madrid, 2003.
54.Joosten EAJ. Corticospinal tract regrowth. Prog Exp Neurol 1997, 53: 1-25.
55.Spilker MH, Yannas IV, Kostyk SK, Norregard TV, Hsu H-P, Spector M. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Rest Neurol Neurosci 2001; 18:23-38.
56.Woerly S, Doan VD, Sosa N, deVellis J, Espinosa A. Reconstruction of the transacted cat spinal cord following Neuro-Gel implantation: axonal tracing,immunohistochemical and ultraestructural studies. Int J Dev Neurosci 2001; 19: 63-83.
57.Houle J and Tesslerb A. Repair of chronic spinal cord injury. Exp Neurol 2003; 182: 247-260.
David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981;214: 931-933.
Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev1996; 76: 319-370.
Nieto-Sampedro M. Neurite outgrowth inhibitors in gliotic tissue. Adv Exp Med Biol 1999; 468:207-224.
Bandtlow CE, Schwab ME. NI/35250/Nogo-A: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibres in the adult vertebrate CNS. Glia 2000; 29:175-181.
Oliver JE, Lorenz MD. Handbook of Veterinary Neurology. 2nd ed., Philadelphia, W.B. Saunders CO,1997.
Dusart I, Schwab ME. Secondary cell death and inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 1994; 6: 712-724.
Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991; 75: 15-26.
Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE. Impared mitochondrial function, oxidative stress and alterated antioxidant enzyme activities following a traumatic spinal cord injury. Brain Res 1997; 765:283-290.
Lee YB, Shih K, Bao P, Ghirnikar RS, Eng LF. Cytokine chemoquine expression in contused rat spinal cord. Neurocherm Int 2000; 36: 417-425.
Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ 2002; 26:238-355.
Balentine JD, Spector M. Calcification of axons in experimental spinal cord trauma. Ann Neurol 1977; 2:520-523.
Young W, Koreh I. Potassium and calcium changes in injured spinal cords. Brain Res 1986; 365: 42-53.
Taoka Y, Okiyama K. Spinal cord injury in the rat. Prog Neurobiol 1998; 56: 341-358.
Lotan M, Solomon A, Ben-Bassta S, Schwarts M. Cytokines modulate the inflammatory response and change permissiveness to neuronal adhesion in injured mammal nervous system. Exp Neurol 1994; 126:284-290.
Fransen R, Schoenen J, Leprince P, Joosten E, Moonen G, Martin D. Effects of macrophage transplantation in the injured rat spinal cord: a combined immunocytochemical and biochemical study.J Neurosci Res 1998; 51: 316-327.
Girardi FP, Khan SN, Cammisa FP, Blanck T.J.J. Advances and Strategies for Spinal Cord Regeneration. Orthop Clin North America, 2000: 31:465-472.
Bartholdi D, Schwab ME. Expression of proinflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: anhybridisation study. Eur J Neurosci 1997; 9: 1422-1438.
Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelinassociated neurite growth inhibitors. Nature 1990; 343:269-272.
Schachner M, Bartsch U. Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) information and maintenance of myelin. Glia 2000; 29:154-165.
Filbin MT. The muddle with MAG. Mol Cell Neurosci 1996; 8:84-92.
Tang S, Woodhal RW, Shen YJ, deBellard ME, Saffell JL,Doherty P, et al. Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration. Mol Cell NeuroSci 1997; 9:333-346.
Feiner L, Koppel AM, Kobayashi H, Raper JA. Secreted chick semaphorines bind recombinant neurophilin with similar affinities but bind different subsets on neurons in situ. Neuron 1997; 19:539-545.
Wang KH, Brose K, Arnold D, Kidd T, Goodman CS, Henzel W, et al. Biochemical purification of amammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 1999;96:771-784.
Taylor J, Pesheva P, Schachner M. Influence of janusin and tenascin on growth cone behaviour in vitro. J Neurosci Res 1993; 35: 347-62.
Bovolenta P, Wandosell F, Nieto-Sampedro M.Characterization of a neurite outgrowth inhibitor expressed after CNS injury. Eur J Neurosci 1993; 5:454-465.
Bovolenta P, Fernaud-Espinosa I, Mendez-Otero R,Nieto-Sampedro, M. Neurite outgrowth inhibitor of gliotic brain tissue. Mode of action and cellular localization, studied with specific monoclonalantibodies. Eur J Neurosci 1997; 9:977-989.
Canning DR, Hoke A, Malemud CJ, Silver J. A potent inhibitor of neurite outgrowth that predominates in the extracellular matrix of reactive astrocytes. Int J Dev Neurosci 1996; 14: 153-175.
Nieto-Sampedro M. Reparación del trauma medular. Bol Soc Esp Neuroci 2001; 12: 2-15.
Bligth AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelinization by Schwann cells. J Neurol Sci 1989; 91:15-34.
Blight AR. Morphometric analysis of blood vessels in chronic experimental spinal cord injury: hypervascularity and recovery of function. J Neurol Sci 1991; 106:158-174.
Risling MK, Fried H, Linda T, Carlsted T, CulheimS. Regrowth of motor axons following spinal cord lesions: distribution of laminin and collagen in the CNS scar tissue. Brain Res Bull 1993; 30: 405-414.
Means ED, Anderson DK. Neuronophagia by leukocites in experimental spinal cord injury. J Neuropathol Exp Neurol 1983; 42:707-719.
McTigue DM, Tani M, Krivacic K, Chernosky A, Kelner GS, Maciejewski D. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 1998; 53: 358-376.
Moreno-Flores M.T, Bovolenta, P, Nieto-Sampedro M. Polymorphonuclear leukocytes in brain parenchyma after injury and their interaction with purified astrocytes in culture. Glia 1992; 7: 146-157.
Perry VH, Brown MC, Gordon S. The macrophage response and inflammation in the central nervous system. Trends Neurosci 1993; 16: 268-273.
Anderson PB, Perry BH, Gordon S. The kinetic and morphological characteristics of the macrofaguemicroglial response to kainic acid-induced neuronal degeneration. Neuroscience 1991; 42: 202-214.
Streit WJ, Graeber MB, Kreutzberg GW. Functional plasticity of microglia: a review. Glia 1988;1:301-307.
Barlett B, Holets VR, Bates ML, Clarke TS, Watson BD. Characterization of photochemically induced spinalcord injury in the rat by light and electron microscopy. Exp. Neurol 1994; 127:76-93.
Wang CX, Oslochowka JA, Wrathall JR. Increase of interleukin-1ß mRNA and protein in the spinal cord following experimental traumatic injury in the rat. Brain Res 1997; 59: 190-196.
Popovich PG, Stokes BT and Whitacre CC. Concept of autoimmunity following spinal cord injury: possible roles for Tlymphocytes in the traumatized central nervous system. J Neurosci Res 1996; 45: 349-363.
Griffiths IR, McCulloch MC. Nerve fibres in spinal cord impact injures. J Neurol Sci 1983; 58: 335-349.
Bligth AR, Decrescito V. Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons. Neuroscience 1986; 19:321-346.
Morin-Richau C, Felblum S, Privat A. Astrocytes and oligodendrocytes reactions after total section of the rat spinal cord. Brian Res 1998; 783: 85-101.
Kotter MR, Setzu A, Fraser JS, vanRooijen N, Franklin RJM. Macrophage depletion impairs oligodendrocyte remyelinization following lysolecithin-induced demyelinization. Glia 2001; 35: 204-212.
Bligth AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelinization by Schwann cells. J.Neurol Sci 1989; 91:15-34.
Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 1997; 148: 453-463.
Li Y, Raisman G. Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 1994; 14: 4050-4063.
Houle JD, YeJH. Changes occur in the ability to promote axonal regeneration as the post-injury period increases. Neuroreport 1997; 8: 751-755.
Bhave SV, Ghoda L and Hoffman PL. Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. Neurosci 1999; 19: 3277-3286.
Wrathall JR, Choiniere D, Teng YD. Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainite antagonist NBQX. J Neurosci 1994; 14: 6598-6607.
Bartholdi D, Schwab ME. Methylpresnisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res 1995; 672: 177-186.
Caroni P, Schwab ME. Antibody against myelin associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter. Neuron 1988; 1: 85-96.
Caballero Ch S. Producción de células similares a la glía de Schwann a partir de células madre neurales, para la reparación de lesiones medulares en rata (tesis doctoral). Madrid, España. Universidad Autónoma de Madrid, 2003.
Joosten EAJ. Corticospinal tract regrowth. Prog Exp Neurol 1997, 53:1-25.
Spilker MH, Yannas IV, Kostyk SK, Norregard TV, Hsu H-P, Spector M. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Rest Neurol Neurosci 2001; 18:23-38.
Woerly S, Doan VD, Sosa N, deVellis J, Espinosa A. Reconstruction of the transacted cat spinal cord following Neuro-Gel implantation: axonal tracing,immunohistochemical and ultraestructural studies. Int J Dev Neurosci 2001; 19: 63-83.
Houle J and Tesslerb A. Repair of chronic spinal cord injury. Exp Neurol 2003; 182: 247-260.