2005, Número 1
<< Anterior Siguiente >>
Rev Fac Med UNAM 2005; 48 (1)
Impacto de la genómica bacteriana en la medicina humana
Meléndez HE, Cervantes GE, Ramos GMA, Cravioto A
Idioma: Español
Referencias bibliográficas: 32
Paginas: 18-23
Archivo PDF: 56.00 Kb.
FRAGMENTO
Introducción
Las enfermedades infecciosas han ocasionado serios problemas de salud a la humanidad a través de su historia. Los agentes infecciosos han desencadenado pandemias con grandes pérdidas de vidas humanas, como fue la influenza en 1918.
Con la publicación en el siglo XIX de los trabajos de Pasteur en Francia y de Koch en Alemania se establecieron los fundamentos científicos de la infectología, así como la capacidad de los microorganismos para producir enfermedad. Paralelamente a esto, los avances en inmunología en esas fechas contribuyeron a reconocer la respuesta del huésped y desarrollar métodos de cura como la seroterapia de Von Behring contra la difteria.
REFERENCIAS (EN ESTE ARTÍCULO)
Von Behring E, Kitasato S. The mechanism of diphtheria immunity and tetanus immunity in animals. Mol Microbiol 1890; 28: 1317-1320.
Roe BA. Shotgun library construction for DNA sequencing. Methods Mol Biol 2004; 255: 171-178.
Broder S, Venter JC. Whole genomes: the foundation of new biology and medicine. Curr Opin Biotechnol 2000; 11: 581-585.
Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR et al. Whole genome random sequencing and assembly of Haemophilus influenzae Rd. 1995. Science 1995; 269: 496-512.
Fraser CM, Goycatne JD, White O, Adams MD, Clayton RA, Fleischmann RD et al. The minimal gene complement of Mycoplasma genitalum. Science. 1995; 270: 397-403.
Human Genome Project Information: http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393: 537-44.
Rhodius V, Van Dyk KT, Gross C, La Rossa RA. Impact of genomic technology on studies of bacterial gene expression. Annu Rev Microbiol 2002; 56: 599-624.
Schoolnik KG. Functional and comparative genomics of pathogenic bacteria. Curr Opin Microbiol 2002; 5: 20-26.
Fadiel A, Naftolin F. Microarray applications and challenges: a vast array of possibilities. Int Arch Biosci 2003: 1111-1121.
Bryant AP, Venter D, Browne-Robins R, Curtis N. Chips with everything: DNA microarrays in infectious diseases. Lancet. 2004; 4: 100-111.
Rick WY, Wang T, Bedzyk L, Croker MK. Application of DNA microarray in microbial systems. J Microbiol Meth 2001; 47: 257-272.
Suerbaum S, Josenhans C, Claus H, Frosch M. Bacterial genomics: seven years on. Trends Microbiol. 2002; 10: 351-353.
Anderson GV, Alsmark C, Canback B, Wagied D, Frank C, Kalberg O et al. Comparative genomics of microbial pathogens and symbionts. Bioinformatics. 2002; 18: 17.
Schnappinger D, Ehrt S, Voskuil IM, Liu Y, Mangan AJ, Butcher DP et al. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 2003; 198: 693-704.
Covacci A, Rappuoli R. Helicobacter pylori: after the genomes, back to biology. J Exp Med 2003; 197: 807-811.
Suerbaum S, Josenhans C, Sterzenbach T, Drescher B, Brandt P, Bell M et al. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci USA. 2003; 100: 7901-7906.
Dobrindt U, Agerer F, Michaelis K, Janka A, Buchrieser C, Samuelson et al. Analysis of genome plasticity in pathogenic and comensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 2003; 185: 1831-1840.
Cockerill RF. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical laboratory. Arch Pathol Lab Med 2003; 127: 1112-1120.
Journal of Clinical Microbiology. http://jcm.asm.org/
Kiechle FL, Holland-Stanley CA. Genomics, transcriptomics, proteomics and numbers. Arch Pathol Lab Med 2003; 127: 1089-1097.
Behr MA. Correlation between BCG genomics and protective efficacy. Scand J Infect Dis 2001; 33: 249-252.
Behr MA. Comparative genomics of BCG vaccines. Tuberculosis. 2001; 81: 165-168.
Rosenkrands I, King A, Weldingh K, Moniatte M, Moertz E, Andersen P. Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 2000; 21: 3740-3756.
Urquhart BL, Cordwell SJ, Humphery-Smith I. Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun 1998; 253: 70-79.
Cockle PJ, Gordon SV, Lalvani A, Buddle MB, Hewinson RG, Vordermeier HM. Identification of novel Mycobacterium tuberculosis antigens as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect Immun 2002; 70: 6996-7003.
Hughes D. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nat Rev Genetics. 2003; 4: 432-441.
Zhang Y, Amzel LM. Tuberculosis drug targets. Curr Drug Targets 2002; 3: 131-154.
McKinney JD, Honer zu Bentrup K, Munoz-Elias J, Miczak A, Chen B, Chang W-T et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000; 406: 735-738.
Sharma V, Sharma S, Honer zu Bentrup K, McKinney JD, Russell DG, Jacobs WR, Sacchettini JC. The structure of M. tuberculosis isocitrate lyase: A lynchpin to survival within the immune host. Nat Struct Biol 2000; 7: 663-668.
Guardiola-Diaz HM, Foster LA, Mushrush D, Vaz AD. Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis: implications for the treatment of tuberculosis. Biochem Pharmacol 2001; 61: 1463-1470.
UNICEF/UNDP/World Bank/WHO. Genome to drugs and diagnostics 2004. http://www.who.int/tdr/grants/workplans/genomics.htm