2006, Número 3
<< Anterior Siguiente >>
Arch Neurocien 2006; 11 (3)
Determinación de biosíntesis de oxido nítrico en los pacientes con sistema externo de derivación de LCR. su utilidad en el diagnostico diferencial de meningitis aséptica vs bacteriana
Castro ME, Soto HJL
Idioma: Español
Referencias bibliográficas: 32
Paginas: 161-169
Archivo PDF: 173.66 Kb.
RESUMEN
En los pacientes sometidos a neurocirugía se observaron con frecuencia cambios en el liquido cefalorraquídeo (LCR) con diferentes grados de pleocitocis. La meningitis post operatoria ocurre de 0.5% a 0.7% y esta causada en su mayoría por el Staphilococus aureus o Bacilos gram negativos. Con objeto de averiguan si es útil la determinación de oxido nítrico(014) en LCR para diferenciar entre una meningitis séptica y una aséptica se estudiaron los pacientes operados en el transcurso de un año 13 sin infección y 39 con neuroinfeccion. Encontramos que las mas altas concentraciones del substrato para la formación de ON se encuentra en el grupo de pacientes con meningitis bacteriana post neuroquirurgica y con sistema de derivación.
REFERENCIAS (EN ESTE ARTÍCULO)
Carmel PW, Fraser RAR, Stein BM. Aseptic meningitis following posterior fossa surgery in children. J Neurosurg 1974; 41:44-9.
Kaufman BA, Tunkel AR, Pryor JC, et al. Meningitis in the neurosurgical patient. Infect Dis Clin North Am 1990; 4:677-701.
Kim YS, Pons VG. Infections in the neurosurgieal intensive care unit. Neurosurg Clin North Am 1994; 5:741-54.
Ross R, Rosegay H, Pons V. Differentiation of aseptic and bacterial meningitis in postoperative neurosurgieal patients. J Neurosurg 1988;69:669-74.
López-Cortés LF, Márquez-Arbizu R, Jiménez-Jiménez LM, et al. Cerebrospinal fluid tumor necrosis factor-alfa, interleukin-l beta, interleukin-6, and interleukin-8 as diagnostic markers of cerebrospinal fluid infection in neurosurgical patients. Crit Care Med 2000; 28:215-219.
Quagliarello V, Scheld WM. Bacterial meningitis. Pathogenesis, pathopshysiology, and progress. N Engl J Med 1992; 327:864-872.
McCann S.M, Kimura M, Karanth S, et al: Nitric oxide controls the hypothalamic-pituitary response to cytokines. Neuroimmunomodulation 1997;4: 98-106.
Dawson TM, Dawson VL, Snyder SH. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 1992; 32: 297-311.
Raghavan SAV, Dikshit M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharm Res 2004; 49: 397-414.
Wiesinger H. Arginine metabolism and the synthesis of nitric oxide in the nervous system. Progress Neurobiol 2001; 64: 365-91.
Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002-2012.
Nathan C, Xie QW. Nitric oxide synthases: roles, tolls and controls. Cell 1994; 78: 915-8.
Aoki E, Semba R, Mikoshiba K, Kashiwamata S.: Predominant localization in glial cells of free L-arginina. Immunocytochemieal evidence. Brain Res 1991;547: 190-192.
Solomonson LP, Flam B.R, Pendleton LC, Goodwin B.L, Eichler D.C.: The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. Review. J Exp Biol 2003; 206: 2083-7.
Muñoz-Fernández MA, Fresno M. The role of tumor necrosis factor, interleukin 6, interferon- û and inducible nitriC oxide synthase in the development and pathology of the nervous system. Progress Neurobiol 1998; 56: 307-40.
Luiking Y.C, Deutz N.E.: Isotopic investigation of nitric oxide metabolism in disease. Curr Opin Clin Nutr Metab Care 2003; 6 (1): 103-8.
Ikeda M, Morita l, Murota S, Sekiguchi F, Yuasa T, Miyatake T. Cerebellar nitric oxide synthase activity is reduced in nervous and Purkinje cell degeneration mutants but not in climbing fiber-lesiones mice. Neurosci Lett 1993; 155: 148-150.
Ikeda M, Sato I, Yuasa T, Miyatake T, Murota S. Nitrite, nitrate and cGMP in the cerebrospinal fluid in degenerative neurologic diseases. J Neural Transm 1995; 100: 263-7.
Boje KM, Jaworowicz D, Jr, Eaybon JJ. Neuroinflammatory role of prostaglandins during experimental meningitis: evidence suggestive of an in vivo relationship between nitric oxide and prostaglandins. J Pharmacol Exp Ther 2003; 304 (1): 319-25.
Milstien S, Sakai N, Brew BJ, Krieger C, Vickers JB, Saito K, Heyes MP. Cerebrospinal fluid nitrite/nitrate levels in neurologic diseases. J Neurochem 1994; 63: 1178-80.
Murphy S, Minor RL Jr, Welk G, Harrison DG. Evidence for an astrocytederived vasorelaxing factor with prorperties similar to nitric oxide. J Neurochem 1990; 55:349-351.
Murphy S, Simmons ML, Agulló L, García A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 1993; 16: 323-8.
Bolaños J.P, Peuchen S, Heales S.J.R, Land J.M, Clark J.B.: Nitric oxidemediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 1994; 63:910-6.
Gross SS, Wolin MS. Nitric oxide: pathophysiological mechamisms. Rev Physiol1995; 57: 737-69.
Glass J.D, Johnson R.T.: Human immunodeficiency virus and the brain. Rev Neurosci 1996; 19: 1-26.
Hunot S, Boissiere F, Faucheux B, Brugg B, Mouattprigent A, Agid Y, Hirsch EC. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 1996; 72: 355-63.
Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 1997; 20: 132-9.
Teasdale O, Jennet R. Assessment of coma and impaired conciousness. A practical sea le. Lancet 1974; 2: 81-4.
Jennet B, Bond M. Assessment of outcome alter severe brain damage. A practical scale. Lancet 1975; 2: 480-4.
Wood JH. Physiological neurochemistry of cerebrospinal fluid. In: Lajtha, A.(Ed.), Handbook of neurochemistry, vol. 1, 2nd. Ed. Plenum Press, New York, 1982, pp. 415-487.
Shih, V.E. Urea Cycle disorders and other congenital hyperamonemic syndromes. In: Stanbury JB, Wyngaarden JB, Frederickson DS. (Eds.), The metabolic basis of Inherited disease. McGraw-Hill, New York, 1978, pp. 362-386.
Gjessing LR, Gjesdhal P, Sjaastad, O. The free aminoacids in human cerebrospinal fluid. J Neurochem 1972; 19: 1807-8.