2006, Número 3
<< Anterior Siguiente >>
Gac Med Mex 2006; 142 (3)
Estrés oxidativo, péptido β-amiloide y enfermedad de Alzheimer
Manzano-León N, Mas-Oliva J
Idioma: Español
Referencias bibliográficas: 144
Paginas: 229-238
Archivo PDF: 523.07 Kb.
RESUMEN
La enfermedad de Alzheimer es la causa más común de demencia en la población de edad avanzada. Una de las características histopatológicas de esta enfermedad es la formación de placas seniles, cuyo componente proteínico es el péptido β-amiloide (Aβ) en su forma insoluble. Este péptido se produce normalmente en forma monomérica soluble y circula en concentraciones bajas en el líquido cefalorraquídeo y sangre. En concentraciones fisiológicas actúa como factor neurotrófico y neuroprotector, sin embargo con el envejecimiento y sobre todo en la enfermedad de Alzheimer se acumula, forma fibrillas insolubles y causa neurotoxicidad.
La toxicidad del AΒ se ha asociado a la generación de radicales libres que causan peroxidación de lípidos y oxidación de proteínas entre otros daños. Se ha planteado que el Aβ pueda reconocer a receptores específicos que median a su vez neurotoxicidad. Entre estos se encuentra el receptor scavenger o pepenador que se expresa en la microglia y es capaz de internalizar agregados de este péptido. Independientemente de la vía de entrada del péptido a la célula, éste genera un estado de estrés oxidativo que eventualmente desencadena la muerte celular.
Estudios recientes desarrollados en nuestro laboratorio muestran que el proceso de traducción de proteínas que intervienen en el proceso de endocitosis mediada por un receptor puede ser afectado por una condición de estrés oxidativo. Este es el caso de la Β-adaptina, proteína clave en la formación del pozo cubierto.
REFERENCIAS (EN ESTE ARTÍCULO)
Terry RD, Masliah E, Salmon DP, Butters N, De Teresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer´s disease : synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572-580.
Durany N, Munch G, Michel T. Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci 1999;249:S68-S73
Katzman R, Saitoh T. Advances in Alzheimer´s disease. FASEB J 1991;4:278-286.
Glenner G, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885-890.
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985;82:4245-4249.
Pike CJ, Walenzcewicz AJ, Glabe CG, Cotman CW. In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991;563:311-314.
Varadarajan S, Yatin S, Kanski J, Jahanshahi F, Butterfield DA. Methionine residue 35 is important in amyloid β-peptide-associated free radical oxidative stress. Brain Res Bull 1999;50:133-141.
Mas-Oliva J, Arnold KS, Wagner WD, Phillips DR, Pitas RE, Innerarity TL. Isolation and characterization of a Platelet-derived Macrophage-binding proteoglycan. J Biol Chem 1994;269:10177-10183.
Mas-Oliva J, Arnold KS, Wagner WD, Innerarity TL. Isolation of a platelet proteoglycan that inhibits the uptake of acetyl LDL by macrophages. Circulation 1992;86:I-156.
Selkoe DJ. Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 1994;10:373-403.
Sisodia SS. β-amyloid precursor protein clavage by a membrane-bound protease. Proc Natl Acad Sci USA 1992;89:6075-6079.
Santiago-Garcia J, Mas-Oliva J, Innerarity TI, Pitas RE. Secreted forms of the amyloid-β-precursor protein are ligands for the A scavenger receptor. J Biol Chem 2001;276:30655-30661.
Busciglio J, Gabuzda DH, Matsudairia P, Yankner BA. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 1993;90:2092-2096.
Selkoe DJ. Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 1996;271:18295-18298.
Sandbrick R, Hartmann T, Masters CL, Beyreuther K. Genes contibuting to Alzheimer´s disease. Mol Psychiat 1996,1:27-40.
Teller JK, Russo C, DeBusk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, et al. Presence of soluble amyloid β-peptide precedes amyloid plaque formation in Down`s syndrome. Nat Med 1996;2:93-95.
Wisniewski KE, Wisniewski HM, Wen GY. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 1985;17:278-282.
Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL et al. Amyloid β deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998;70:2212-2215.
Hardy J. Amyloid, the presenilinas and Alzheimer’s disease. Trends Neurosci 1997;20:154-159.
Selkoe DJ. Alzheimer´s disease: genotypes, phenotypes, and treatments. Science 1997;275:630-631.
Morris JC, McKeel DW Jr, Storandt M, Rubin EH, Price JL, Grant EA, et al. Very mild Alzheimer’s disease: informant-based clinical, psychometric and pathologic distinction from normal aging. Neurology 1991;41:469-478.
Dickson DW, Crystal HA, Mattiace LA, Masur DM, Balu AD, Davies P et al. Identification of normal and pathological aging in prospectively studied non-demented elderly humans. Neurobiol Aging 1991;13:179-189.
Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztaijn S, et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 1995;14:671-680.
Behl C. Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Progress in Neurobiol 1999;57:301-323.
Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA, et al. Carbonyl-related posttranslational modifications of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 1995;64:2660-2666.
Xing Y, Higuchi K. Amyloid fibril proteins, Mech Ageing Dev 2002;123:1625-1636.
Yankner BA. Mechanisms of neuronal degeneration in Alzheimer´s disease. Neuron 1996;16:921-932.
Saitoh T, Sundsmo M, Roch J, Ximura M, Cole G, Schubert D, et al. Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts. Cell 1989;58:615-622.
Schubert D, Jin LW, Saitoh T, Cole G. The regulation of amyloid β protein precursor secretion and its modulatory role in cell adhesion. Neuron 1989;3:689-694.
Goodman Y, Mattson MP. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp Neurol 1994;128:1-12.
Nishimoto I, Okamato T, Matsuura Y, Takahashi S, Oka Mato T, Murayama Y, et al. Alzheimer amyloid protein precursor complexes with brain GTPbinding protein Go. Nature 1993;362:75-79.
Greenberg S, Koo E, Selkoe D, Qiu W, Kosik K, Secreted β-amyloid precursor protein stimulates MAP-kinase and enhances tau phosphorylation. Proc Natl Acad Sci USA 1994;91:7104-7108.
Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 1990;250:279-282.
Postuma RB, He W, Nunan J, Beyreuther K, Masters CL, Barrow CJ, et al. Substrate-bound β-amyloid peptides inhibit cell adhesion and neurite outgrowth in primary neuronal cultures. J Neurochem 2000;74:1122-1130.
Ramsden M, Plant LD, Webster NJ, Vaughan PF, Henderson Z, Pearson HA. Differential effects of unaggregated and aggregated amyloid β protein (1-40) on K+ channel currents in primery cultures of rat cerebellar granule and cortical neurons. J Neurochem 2001;79:699-712.
Ramsden M, Henderson Z, Pearson HA. Modulation of Ca2+ channel currents in primary cultures of rat cortical neurons by amyloid β protein (1-40) is dependent on solubitity status. Brain Res 2002;956:254-261.
Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron 2003;37:925-937.
Atwood CS, Huang X, Moir RD, Bacarra NM, Romano D, Tanzi RE, et al. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 1998;273:12821-1286.
Smith MA, Nunorama A, Zhu X, Takeda A, Perry G. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2000;12:13-20.
Chan CW, Dharmarajan A, Atwood CS, Huang X, Tanzi RE, Bush AI, Martins RN. Anti-apoptotic action of Alzheimer Aβ. Alzheimer’s Reports 1999;2:1-6.
Bush AI, Lynch T, Cherny RC, Atwood CS, Goldstein LE, Moir RD, et al. Alzheimer Aβ functions as a superoxide antioxidant in vitro and in vivo. Soc Neurosci Abstrc 1999;25:14.
Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP et al. Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β 1-42. J Neurochem 2000;75:1219-1233.
Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. -β amyloid precursor protein as a marker for axonal injury after head injury. Neurosci Lett 1993;160:139-144.
Raby CA, Morganti-Kossmann MC, Kossmann T, Stabel MD, Watson MD, Evans LM, et al. Traumatic brain injury increases β-amyloid peptide 1-42 in cerebrospinal fluid. J Neurochem 1998;71:2505-2509.
Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, et al. Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J Biol Chem 2000;275:19439-19442.
Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. Oxidative damage is the earliest event in Alzheimer´s disease. J Neuropathol Exp Neurol 2001;60:759-767.
Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochem Biophys Acta 2000;1502:139-144.
Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994;91:10771-10778.
Nunomura A, Perry G, Pappolla RP, Friedland RP, Hirai K, Chiba S, et al. Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J Neuropathol Exp Neurol 2000;59:1011-1017.
Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 1996;271:4077-4081.
Funato H, Yoshimura M, Kusui K, Tamaoka A, Ishikawa K, Ohkoshi N, et al. Quantitation of amyloid β-protein (aβ) in the cortex during aging and in Alzheimer’s disease. Am J Pathol 1998;152:1633-1640.
Wisniewski T, Ghiso J, Frangione B. Biology of β-amyloid in Alzheimer’s disease. Neurobiol Dis 1997;4:313-328.
Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993;13:1676-1687.
Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, et al. Secondary structure of amyloid β peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 1994;45:373-379.
Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS. The toxicity in vitro of β-amyloid protein. Biochem J 1995;311:1-16.
Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999;274:25945-25952.
Gerlach M, Ben-Shachar D, Riederer P, Youdim MB. Altered brain metabolism of iron as a cause of degenerative disease? J Neurochem 1994;63:793-807.
Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species formation by β-amyloid. Brain Res 1998;799:91-96.
Liu ST, Howlett G, Barrow CJ. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the Aβ peptide of Alzheimer’s disease. Biochemistry 1999;38:9373-9378.
Manthy PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, Maggio JE. Aluminum, iron and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J Neurochem 1993;61:1171-1174.
Good PF, Perl DP, Bierer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 1992;31:286-292.
Richardson JS. Free radicals in the genesis of Alzheimer´s disease. Ann NY Acad Sci. 1993;695:73-76.
Basun H, Forssell LG, Wetterberg L, Winblad, B. Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm 3, 1991;4:231-258.
Castellani RJ, Smith MA, Nunomura A, Harris PL, Perry G. Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein cerulosplasmin? Free Radic Biol Med 1999;26:1508-512.
Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ. Regional distribution of iron and iron regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 1992;31:327-335.
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc Alzheimer’s disease senile plaques. J Neurol Sci 1998;158:47-452.
Dyrks T, Dyrsk E, Hartmann T, Masters C, Beyreuter K . Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metalcatalyzed oxidation. J Biol Chem 1992;267:18210-18217.
Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 1990;9:315-325.
Halliwell B, Gutteridge JMC. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1984;1:1396-1397.
Yatin SM, Aksenova M, Aksenov M, Butterfield DA. Effect of transglutaminase on Aβ (1-40) fibril formation and neurotoxicity. Alzheimer´s Rep 1999;2:165-170.
Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, et al. The Aβ peptide of Alzheimer´s disease directly produces hydrogen peroxide thought metal ion reduction. Biochemistry 1999;38:7609-7616.
Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, et al. Alzheimer´s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutasa-like subunits. J Biol Chem 2001;276:20466-20473.
Mattson MP, Mattson EP. Amyloid peptide enhances nail rusting: novel insight into mechanisms of aging and Alzheimer’s disease. Ageing Res Rev 2002;1:327-330.
Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP. Conservation of the sequence of the Alzheimer´s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Brain Res 1991;10:299-305.
Walter J, Grunberg J, Capell A, Pesold B, Schindzielorz A, Citron M, et al. Proteolytic processing of the Alzheimer disease-associated presenilin- 1 generates an in vivo substrate for protein kinase C. Proc Natl Acad Sci USA 1997;94:5349-5354.
Varadarajan S, Yatin SM, Aksenova M, Butterfield DA. Alzheimer´s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000;130:184-208.
Butterfield DA, Varadarajan S, Aksenova M, Link C, Yatin SM. On methionine and Alzheimer´s amyloid β-peptide (1-42)-induced oxidative stress. Neurobiol Aging 1999;20:339-342.
Vogt W. Oxidation of methionyl residues in proteins. Tools, targets, and reversal. Free Rad Biol Med 1995;18:93-105.
Naslund J, Schierhorn A, Hellman U, Lanfelt L, Roses AD, Tjernberg LO, et al. Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 1994;91:8378-382.
Dado GP, Gellman SH. Redox control of secondary structure in a designed peptide. J Am Chem Soc 1994;115:12609-12610.
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 3th Edition. Oxford University Press, Oxford. 1999.
Zentella M, Saldaña Y. Papel fisiológico de los radicales libres. Boletín de Educación Bioquímica 1996;15:152-161.
Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994;52:253-265.
Lledías F, Hansberg W. Catalase modification as a marker for singlet oxygen. Methods Enzymol 2000;319:110-119.
Gutteridge JM. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann NY Acad Sci 1994;738:201-213.
Hansberg W. 2002. Biología de las especies de oxígeno reactivas. Mensaje bioquímico. XXVI. Facultad de Medicina, UNAM. México.
Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 1992;119:598-620.
Butterfield DA. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer´s disease brain. Free Rad Res 2002;36:1307-1313.
Thomas T, Thomas G, McLendon C, Sutton T, Mullan M. β-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996;380:168-171.
Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 1994; 77: 817-827.
Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 1995;378:776-779.
Smith MA, Harris PLR, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 1997;94:9866-9868.
Oteiza PI. A mechanism for the stimulatory effect of aluminum on ironinduced lipid peroxidation. Arch Biochem Biophys 1994;308:374-379.
Cras P, Kawai M, Siedlak S, Mulvihill P, Grambetti P, Lowery D, et al. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer´s disease. Am J Pathol 1990;137:241-246.
Colton CA, Gilbert DL. Production of superoxide anions by CNS macrophage, the microglia. FEBS Letters 1987;223:284-288.
Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer´s disease. J Neurosci 1997;17:2653-7.
Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, et al. Nonenzymatically glycated tau in Alzheimer´s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid betapeptide. Nat Med 1995;1:693-699.
Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A et al. RAGE and amyloid –β peptide neurotoxicity in Alzheimer’s disease. Nature 1996;382:685-6891.
Butterfield DA, Stadtman ER. Protein oxidation processes in aging brain. Adv Cell Aging Gerontol 1997;2:161-191.
Ledesma MD, Bonay P, Colaco C, Avila J. Analysis of microtubuleassociated protein tau glycation in paired helical filaments. J Biol Chem 1994;269:21614-21619.
Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, et al. Oxidative damage in Alzheimer´s. Nature 1996;382:120-121.
Hensley K, Carney JM, Mattson MP, Aksenova M, Harrris M, Wu JF, et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 1994;91:3270-3274.
Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993;43:1609-1611.
Rich JB, Rasmusson DX, Folstein MF, Carson KA, Kawas C, Brandt J. Nonsteroidal anti-inflammatory drugs in Alzheimer´s disease. Neurology 1995;45:51-55.
Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer´s disease and duration of NSAID use. Neurology 1997;48:626-632.
Marzolo MP, von Bernhardi R, Inestrosa NC. Mannose receptor is present in a functional state in rat microglial cells. J Neurosci Res. 1999;58:387-395.
Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res 1987;18:155-171.
Della Bianca V, Dusi S, Bianchini E, Dal Pr I, Rossi F. β-amyloid activates the O2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 1999;274:15493-15499.
Klegeris A, Walkner DG, McGeer PL. Activation of macrophages by Alzheimer β-amyloid peptide. Biochem Biophys Res Commun 1994;199:984-991.
Hurst JK, Barrette WC. Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Mol Bull 1989;24: 271-328.
Meda L, Cassatella MA, Szendrei G, Otvos L, Baron P, Villalba M, et al. Activation of microglial cells by Aβ protein and interferon-gamma. Nature 1995;374:647-650.
Rogers J, Lue LF. Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem Int 2001;39:333-340.
Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995;38:357-366.
Keller JN, Pang Z, Geddes JW, Begley JG, Germeyer A, Waeg G, Mattson MP. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide-role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem 1997;69:273-284.
Blum-Degen D, Frolich L, Hoyer S, Riederer P. Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders. J Neural Transm 1995;S139-S147.
Schubert D, Behl C, Lesley R, Brack A, Dargusch R, Sagara Y, Kimura H. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci USA 1995;92:1989-1993.
Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, et al., Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol. 2001;171:29-45.
Hadding A, Kaltschmidt B, Kaltschmidt C. Overexpression of receptor of advanced glycation end products hypersensitizes cells for amyloid beta peptide-induced cell death. Biochim Biophys Acta 2004;1691:67-72.
Liu Y, Dargusch R, Schubert D. β-amyloid toxicity does not require RAGE protein. Biochem Biophys Res Commun. 1997;128:238-246.
Hussain MM, Maxfield FR, Mas-Oliva J, Tabas I, Ji ZS, Innerarity TL, Mahley RW. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/ β2-macroglobulin receptor. J Biol Chem 1991;266:13936-13940.
Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, et al. β2-macroglobulin is a genetically associated with Alzheimer´s disease. Nat Genet 1998;19:357-360.
Knauer MF, Orlando RA, Glabe CG. Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res 1996;740:6-14.
Marzolo MP, von Bernhardi R, Bu G, Inestrosa NC. Expression of β2-macroglubulin receptor/LRP in rat microglial cells. J Neurosci Res 2000;60:401-411.
Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer´s disease amyloid-β at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 1996;93:4229-434.
Paresce DM, Ghosh RN, Maxfield FR. Microglial cell internalize aggregates of Alzheimer´s disease amyloid β-protein via a scavenger receptor. Neuron 1996;17:553-565.
El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 1996;382:716-719.
Christie RH, Freeman M, Hyman BT. Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease. Am J Pathol 1996;148:399-403.
Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipid 1997;8:275-280.
Rohrer L, Freeman M, Kodama T, Penman M, Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 1990;343:570-572.
Guaderrama-Díaz M, Solis CF, Velasco-Loyden G, Laclette JP, Mas-Oliva J. Control of scavenger receptor-mediated endocitosis by novel ligand of different lenght. Mol Cell Biochem 2005;271:123-132.
Mas-Oliva J, Velasco-Loyden G, Haines TH. Receptor pattern formation as a signal for the capture of lipoproteins. Biochem Biophys Res Commun 1996;224:212-218.
Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CR. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 1991;352:342-344.
Honda M, Akiyama H, Yamada Y, Kondo H, Kawabe Y, Takeya M, et al. Immunohistochemical evidence for a macrophage scavenger receptor in Mato cells and reactive microglia of ischemia and Alzheimer´s disease. Biochem Biophys Res Commun 1998;245:734-740.
Paresce DM, Chung H, Maxfield FR. Slow degradation of aggregates of the Alzheimer´s disease amyloid beta-protein by microglial cells. J Biol Chem 1997;272:29390-29397.
Chung H, Brazil MI, Soe TT, Maxfield FR. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer´s amyloid beta-peptide by microglial cells. J Biol Chem 1999;274: 32301-32308.
Bornemann KD, Wiederhold KH, Pauli C, Ermini F, Stalder M, Schnell L, et al. Aβ-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am J Pathol 2001;158:63-73.
Husemann J, Loike JD, Kodama T, Silverstein SC. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar β–amyloid. J Neuroimmunol 2001;114:142-150.
Husemann J, Silverstein SC. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer´s disease brain. Am J Pathol 2001;158:825-832.
Bamberger MA, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 2003;23:2665-2674.
Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003;9:453-457.
El Khoury J, Hickman SE, Thomas CA, Loike JD, Silverstein SC. Microglia, scavenger receptors, and the pathogenesis of Alzheimer´s disease. Neurobiol Aging 1998;19:S81-S84.
Giulian D, Haverkamp LJ, Yu JH, Karshin W, Tom D, Li J, et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci 1996;16:6021-6037.
Aguilar-Gaytán R, Mas-Oliva J. Oxidative stress impairs endocytosis of the scavenger receptor class A. Biochem Biophys Res Commun 2003;305:510-517.
Manzano-León N, Guaderrama-Díaz M, Mas-Oliva J. Efecto del estrés oxidativo sobre la función del receptor scavenger. Memorias del XIV Congreso de Bioenergética y Biomembranas. Sociedad Mexicana de Bioquímica. 2005.p. 56-63.