2003, Número 2
Mecanismos fisiopatogénicos de la pancreatitis aguda
Gutiérrez VI, Domínguez MA, Acevedo MJJ
Idioma: Español
Referencias bibliográficas: 60
Paginas: 95-102
Archivo PDF: 78.69 Kb.
RESUMEN
Propósito: Análisis de la bibliografía sobre los principales aspectos de la fisiopatología de la pancreatitis aguda.
Obtención de los datos: Revisión de la literatura médica en idioma inglés de 1997 a 2002 (60 citas seleccionadas). Selección de los estudios: Se seleccionaron los artículos más relevantes relacionados con la fisiopatología de la pancreatitis aguda.
Extracción de los datos: Se revisó la literatura médica internacional durante el periodo comprendido de 1997 a 2002 de los estudios de investigación sobre diversos aspectos de la fisiopatología de la pancreatitis aguda. Se utilizó la base de datos MEDLINE del Sistema MEDLARS.
Resultados: La fisiopatología es compleja y no totalmente entendida. Independientemente de la etiología, se cree que el evento inicial es la lesión de la célula acinar mediante la activación intra-acinar de zimógenos inactivos a su forma activa. En los últimos 10 años, se ha investigado el papel de las múltiples vías involucradas en la fisiopatología de la pancreatitis aguda que incluyen al sistema inmune, citocinas, especies reactivas de oxígeno y alteraciones de la microcirculación que llevan al daño local y sistémico.
Conclusión: La pancreatitis aguda es una enfermedad de gravedad variable. Su fisiopatología sigue sin comprenderse completamente, a pesar de los conocimientos actuales sobre la activación intraacinar del tripsinógeno, la producción de citocinas inflamatorias por la misma célula acinar, las alteraciones en la microcirculación con el descubrimiento reciente de la producción local de reninaangiotensina y los efectos de especies reactivas de oxígeno.
REFERENCIAS (EN ESTE ARTÍCULO)
Beckingham IJ, Bornman PC. ABC of diseases of liver, pancreas, and biliary system. Acute pancreatitis. BMJ 2001; 322: 595-8.
Baron TH, Morgan DE. Acute necrotizing pancreatitis. N Engl J Med 1999; 340: 1412-7.
Frossard JL. Tripsin activation peptide (TAP) in acute pancreatitis: from pathophysiology to clinical usefulness. Pancreas 2001; 2: 69-77.
Lankisch PG, Burchard–Reckert S, Lehnick D. Underestimation of acute pancreatitis: patients with only a small increase in amylase/lipase levels can also have or develop severe acute pancreatitis. Gut 1999; 44: 542-4.
Lightner AM, Kirkwood KS. Pathophysiology of gallstone pancreatitis. Front Biosci 2001; e6: 66-76.
al-Eryani S, Payer J, Huorka M, Duris I. Etiology and pathogenesis of acute pancreatitis. (abstracts). Bratisl Lek Listy 1998; 99: 303-11.
Frossard Jl, Pastor CM. Experimental acute pancreatitis: new insights into the pathophysiology. Front Biosci 2002; 7: d275-87.
Peters AB. Acute pancreatitis. In: Feldman: Sleisenger and Fordtran´s Gastrointestinal and liver diseases. 6th ed. Philadelphia: WB Saunders, 1998: 809-857.
Kang SY, Go VL. Pancreatic exocrine-endocrine interrelationship. Clinical implications. Gastroenterol Clin North Am 1999; 28: 551-69, viii.
Karne S, Gorelick FS. Etiopathogenesis of acute pancreatitis. Surg Clin North Am 1999; 79: 699-710.
Lerch MM, Gorelick FS. Early trypsinogen activation in acute pancreatitis. Med Clin North Am 2000; 84: 549-63, viii.
Hartwig W, Jimenez RE, Werner J, Lewandrowski KB, Warshaw AL, Fernandez-del Castillo C. Intersticial trypsinogen release and its relevance to the transformation of mild into necrotizing pancreatitis in rats. Gastroenterology 1999; 117: 717-25.
Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, et al. Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA 2000; 97: 13126-31.
Parekh AB. Calcium signaling and acute pancreatitis: specific response to a promiscuous messenger. Proc Natl Acad Sci U SA 2000; 97: 12933-4.
Krüger B, Albrecht E, Lerch MM. The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 2000; 157: 43-50.
Logsdon C. Phosphatidylinositol 3-kinase and trypsin activation in pancreatitis. J Clin Invest 2001; 108: 1267-8.
Singh VP, Saluja AK, Bhagar L, van Acker GJ, Song AM, Soltoff SP, et al. Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis. J Clin Invest 2001; 108: 1387-95.
Blinman TA, Gukousky I, Mouria M, Zaninovic V, Livingston E, Pandol SJ, et al. Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. Gastroenterology 2000; 279: C1993-C2003.
Demols A, Le Moine O, Desalle F, Quertinmont E, Van Laethem JL, Deviere L. CD4 (+) T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 2000; 118: 582-90.
Ben-Baruch A, Michiel DF, Oppenheim JJ. Signals and receptors involved in recruitment of inflammatory cells. Biol Chem 1995; 270: 11703-6.
Giroir BP. Pancreatitis, cytokines, and SIRS déjá vu all over again? Crit Care Med 1999; 27: 680-1.
Gukovsky I, Gukovsky A, Blinman TA. Zaninovic V, Pandol SJ. Early NF kB activation is associated with hormone-induced pancreatitis. Am J. Physiol 1998; 275: G 1402-14
Han B, Ji B, Logsdon CD. CCK independently activates intracellular trypsinogen and NF-Kappa B in rat pancreatic acinar cells. Am J Physiol Cell Physiol 2001; 280: c465-72.
Beger HG, Gansauge F, Mayer JM. The role of immunocytes in acute and chronic pancreatitis: when friends turn into enemies. Gastroenterology 2000; 118: 626-9.
Blackstone MO. CD4 + T cells in cerulein-induced pancreatitis. Gastroenterology 2000; 119: 88-2.
Lipsett PA. Serum cytokines, proteins, and receptors in acute pancreatitis: mediators, markers, or more of the same? Crit Care Med 2001; 29: 1642-4.
Frossard JL, Kwak B, Chanson M, Morel P, Hadengue A, Mach F. Cd 40 ligand-deficient mice are protected against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 2001: 121: 184-94.
Denham W, Norman J. The potential role of therapeutic cytokine manipulation in acute pancreatitis. Surg Clin North Am 1999; 79: 767-81.
Angood PB. Pancreatitis inflammatory response syndrome (PIRS)? Can there be another inflammatory response syndrome? Crit Care Med 1999; 27: 2832-3.
Bhatia M, Saluja AK, Hofbaver B, Frossard Jl, Lee HS, Castagliuolo I, et al. Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury. Proc Natl Acad Sci USA 1998; 95: 4760-5.
Mayer J, Rau B, Gansauge F, Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000; 47: 546-52.
Simovic MO, Bonham MJ, Abu-Zidan FM, Windsor JA. Anti-inflammatory cytokine response and clinical outcome in acute pancreatitis. Crit Care Med 1999; 27: 2662-5.
Brivet FG, Emilie D, Galanaud P. Pro-and anti-inflammatory cytokines during acute severe pancreatitis: an early and sustained response, although unpredictable of death. Parisian Study Group on Acute Pancreatitis. Crit Care Med 1999; 27: 749-55.
Rau B, Baumgart K, Paszkowsk: AS, Mayer JM, Beger HG. Clinical relevance of caspase 1 activated cytokines in acute pancreatitis: high correlation of serum interleukin- 18 with pancreatic necrosis and systemic complications. Crit Care Med 2001; 29: 1556-62.
Miskovitz P. Acute pancreatitis: Further insight into mechanisms. Crit Care Med 1998; 26: 816-7.
Rau B, Poch B, Gansauge F, Baver A, Nussler AK, Nevalanen T, et al. Pathophysiologic role of oxygen free radicals in acute pancreatitis: initiating event or mediator of tissue damage? Ann Surg 2000; 231: 352-60
Abu-Zidan FM, Bonham MJ, Windsor JA. Severity of acute pancreatitis: a multivariate analysis of oxidative stress markers and modified Glasgow criteria. Br J Surg 2000; 87: 1019-23.
Tsai K, Wang SS, Chen TS, Kong CW, Chang FY, Lee SD, et al. Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis. Gut 1998; 42: 850-5.
McMillen MA, Sumpio BE. Endothelins: polyfunctional cytokines. J Am Coll Surg 1995; 180: 621-37.
Plusczyk T, Bersal B, Menger MD, Feijel G. Differential effects of ET-1, ET-2, and ET-3 on pancreatic microcirculation, tissue integrity, and inflammation. Dig Dis Sci 2001; 46: 1343-51.
Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ, Foitzik T. Effect of endothelin and endothelin receptor blockade on capillary permeability in experimental pancreatitis. Gut 2000; 46: 390-4.
Lai PBS. Local rennin-angiotensin system in the pancreas: the significance in acute pancreatitis. J Pancreas 2001; 2: 13-5.
Lundberg AH, Granger DN, Russell J, Sabek O, Henry J, Gaber L, Quantitative measurement of P-and-E-selectin adhesion molecules in acute pancreatitis: correlation with distant organ injury. Ann Surg 2000; 231: 213-22.
Miskovitz P. Role of selectins in acute pancreatitis. Crit Care Med 2001; 29: 686-7
Folch E, Salas A, Panes J, Gelpi E, Rosello-Catafau J, Anderson DC, et al. Role of P-selectin and ICAM-1 in pancreatitis-induced lung inflammation in rats: Significance of oxidative stress. Ann Surg 1999; 230: 792-8; discussion 798-9.
Frossard Jl, Saluja A, Bhagat L, Lee HS, Bhatia M, Hofbauer B, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 1999; 116: 694-701.
Lundberg AH, Fukatsu K, Gaber L, Callicutt S, Kotb M, Wilcox H, et al. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis. Ann Surg 2001; 233: 213-20.
Denham W, Yang J, Wang H, Botchkina G, Tracey KJ, Norman J. Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome. Crit Care Med 2000; 28: 2567-72.
Jones BA, Gores GJ. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine. Am J Physiol 1997; 273(6 Pt1): G1174-88.
United Kingdom guidelines for the management of acute pancreatitis. British Society of Gastroenterology. Gut 1998; 42 Suppl. 2: S1-13.
Dervenis Ch. Assessment of severity and management of acute pancreatitis based on the Santorini Consensus Conference Report. J Pancreas 2000; 1: 178-82.
Buchler MW, Uhl W, Andren-Sandperg A. CAPAP in acute pancreatitis: just another marker or real progress? Gut 1998; 42: 8-9.
Armengol-Carrasco M, Oller B, Escudero LE, Roca J, Gener J, Rodriguez N, et al. Specific prognostic factors for secondary pancreatic infection in severe acute pancreatitis. Dig Surg 1999; 16: 125-9.
Muller CA, Uhl W, Printzen G, Gloor B, Bischofberger H, Tcholakov O, et al. Role of procalcitonin and granulocyte colony stimulating factor in the early prediction of infected necrosis in severe acute pancreatitis. Gut 2000; 46: 233-8.
Pezzilli R, Mellzi, d’Eril GV, Morselli-Labate AM. Merlini G, Barakat B, Bojoni T. Serum amyloid A, procalcitonin, and C-reactive protein in early assessment of severity of acute pancreatitis. Dig Dis Sci 2000; 45: 1072-8.
Heresbach D, Letourneur JP, Bahon I, Pagenault M, Guillou YM, Dyard F, et al. Value of early blood Th-1 cytokine determination in predicting severity of acute pancreatitis. Scand J Gastroenterol 1998; 33: 554-60.
Kemppainen EA, Hedstrom Jl, Puolakkainen PA, Haapiainen RK, Stenman UH. Advances in the laboratory diagnostics of acute pancreatitis. Ann Med 1998; 30: 169-75.
Mutinga M, Rosenbluth A, Tenner SM, Odze RR, Siga Gt, Banks PA. Does mortality occur early or late in acute pancreatitis? Int J Pancreatol 2000; 28: 91-5.
Johnson CD, Kingsnorth AN, Imrie CW, McMahon MJ, Neoptolemos JP, Mckay C, et al. Double blind, randomized, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 2001; 48: 62-9.
Imrie CW, Mckay CJ. The scientific basis of medical therapy of acute pancreatitis. Could it work, and is there a role for lexipafant? Gastroenterol Clin North Am 1999; 28: 591-9, ix.