2024, Número 3
<< Anterior Siguiente >>
Rev Med UAS 2024; 14 (3)
Activación de PI3K y MAPK mediante GPER en células PC3 de cáncer de próstata
Rico-Fuentes C, López-Pulido EI, Villegas-Pineda JC, Pereira-Suárez AL, Arce-Bojórquez B, Montoya-Moreno M, Zataráin LJR, Moreno-Ortíz JM, Ramírez-de-Arellano A
Idioma: Español
Referencias bibliográficas: 19
Paginas: 210-216
Archivo PDF: 367.45 Kb.
RESUMEN
El cáncer de próstata (CaP) es la segunda enfermedad más frecuente a nivel mundial según la Organización Mundial de la Salud (OMS). Uno de los mayores desafíos en los métodos de tratamiento es el control de la metástasis; por lo tanto, para comprender mejor el proceso de señalización, nos centramos en el Receptor Acoplado a Proteína G para Estrógenos (GPER), el cual ha sido relevante en el desarrollo del CaP. Hasta la fecha, pocos informes sugieren que GPER induce vías de señalización; sin embargo, su participación aún no ha sido esclarecida en CaP.
Objetivo: Evaluar la activación de vías de señalización activadas por GPER en células de CaP. Los materiales y métodos utilizados fueron líneas celulares humanas PC3 y LNCaP, el cual se realizó una estimula-ción celular con el agonista G1 y estradiol, posteriormente se realizó la técnica por western blot.
Resultados: Se observo la activación de la vía de señalización MAPK mediante GPER en la línea celular PC3.
Conclusión: las vías de señalización, como MAPK/ERK muestra tener importancia en línea celular independiente de andrógenos.
REFERENCIAS (EN ESTE ARTÍCULO)
Bray F, Laversanne M, Sung H. Ferlay J, Siegel RL, Soerjomataram I et al. Global cancer statistics 2022: GLOBOCAN estima-tes of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834
Rossi V, Di Zazzo E, Galasso G, De Rosa C, Abbondanza C, Sinisi A et al. Estrogens Mo-dulate Somatostatin Receptors Expression and Synergize With the Somatostatin Analog Pasireotide in Prostate Cells. Front Pharma-col. 2019;0:28. doi:10.3389/FPHAR.2019.00028
Figueira MI, Cardoso HJ, Socorro S. The role of GPER signaling in carcinogenesis: A focus on prostate cancer. In: Recent Trends in Cancer Biology. Springer Internat Pub; 2018:59-117. doi:10.1007/978-3-319-71553-7_5
Fang JY, Richardson BC. The MAPK signa-lling pathways and colorectal cancer. Lancet Oncol. 2005;6(5):322-327. doi:10.1016/S1470-2045(05)70168-6
Vo DKH, Hartig R, Weinert S, Haybaeck J, Nass N. G-Protein-Coupled Estrogen Re-ceptor (GPER)-Specific Agonist G1 Induces ER Stress Leading to Cell Death in MCF-7 Cells. Biomolecules. 2019;9(9). doi:10.3390/BIOM9090503
Liu H, Yan Y, Wen H, Jiang X, Cao X, Zhang G et al. A novel estrogen receptor GPER me-diates proliferation induced by 17β-estradiol and selective GPER agonist G-1 in estrogen receptor α (ERα)-negative ovarian cancer cells. Cell Biol Int. 2014;38(5):631-638. doi:10.1002/cbin.10243
Lam HM, Ouyang B, Chen J, Ying J, Wang J, Wu CL et al. Targeting GPR30 with G-1: a new therapeutic target for castration-resis-tant prostate cancer. Endocr Relat Cancer. 2014;21(6):903. doi:10.1530/ERC-14-0402
Chan, Q., Lam, HM., Ng, CF. et al. Activation of GPR30 inhibits the growth of prostate can-cer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G2 cell-cycle arrest. Cell Death Differ. 2010;17(9):1511-1523. doi:10.1038/cdd.2010.20
Lau KM, Ma FMT, Xia JT, Chan QKY, Ng CF, To KF. Activation of GPR30 stimulates GTP-binding of Gαi1 protein to sustain acti-vation of Erk1/2 in inhibition of prostate can-cer cell growth and modulates metastatic properties. Exp Cell Res. 2017;350(1):199-209. doi:10.1016/J.YEXCR.2016.11.022
Xie BY, Lv QY, Ning CC,Yang BY, Shan WW, Cheng YL et al. TET1-GPER-PI3K/AKT pathway is involved in insulin-dri-ven endometrial cancer cell proliferation. Biochem Biophys Res Commun. 2017;482(4):857-862. doi:10.1016/j.bbrc.2016.11.124
Shan L, Zheng W, Bai B, Hu J,Lv Y, Chen K et al. BMAL1 promotes colorectal cancer cell migration and invasion through ERK- and JNK-dependent c-Myc expression. Cancer Med. 2023;12(4):4472-4485. doi:10.1002/CAM4.5129
Spindler V, Hartlieb E, Rötzer V, Waschke J. Desmoglein 3 Inhibits Keratinocyte Migration by Suppressing p38MAPK Activity. FASEB Journal. 2015;29(S1):142.12.doi:10.1096/FASEBJ.29.1_supple-ment.142.12
Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katsor R, Driscoll PC et al. Synt-hesis and function of 3-phosphorylated inosi-tol lipids. Annu Rev Biochem. 2001;70:535-602. doi:10.1146/annurev.biochem.70.1.535
Su CC, Hsieh KL, Liu PL, Yeh HC, Huang SP, Fang SH, et al. AICAR Induces Apoptosis and Inhibits Migration and Invasion in Prostate Can-cer Cells Through an AMPK/mTOR-Dependent Pathway. Int J Molec Sciec 2019, Vol 20, Page 1647. 2019;20(7):1647. doi:10.3390/IJMS20071647
Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. miR-410–3p promotes prostate cancer pro-gression via regulating PTEN/AKT/mTOR signaling pathway. Biochem Biophys Res Commun. 2018;503(4):2459-2465. doi:10.1016/j.bbrc.2018.06.176
Prossnitz ER. The G-protein-coupled estro-gen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7(12):715-726. doi:10.1038/nrendo.2011.122
Revankar CM, Cimino DF, Sklar LA, Arter-burn JB, Prossnitz ER. A transmembrane in-tracellular estrogen receptor mediates rapid cell signaling. Science (1979). 2005;307(5715):1625-1630. doi:10.1126/science.1106943
Chen H, Zhou L, Wu X, Li R, Wen J, Sha J et al. The PI3K/AKT pathway in the patho-genesis of prostate cancer. The Lancet, Vo-lume 380, Issue 9859, 2095 - 2128. doi: 10.2741/4443
Cham J, Venkateswaran AR, Bhangoo M. Targeting the PI3K-AKT-mTOR Pathway in Castration Resistant Prostate Cancer: A Re-view Article. Clin Genitourin Cancer. 2021;19(6):563.e1-563.e7. doi: 10.1016/j.clgc.2021.07.014.