2024, Número 3
<< Anterior Siguiente >>
Rev Educ Bioquimica 2024; 43 (3)
Las S-RNasas: T2 ribonucleasas especializadas en evitar la autofecundación en angiospermas usando mecanismos diversos que van más allá de su actividad de ribonucleasa
García-Caffarel E, Juárez-Díaz JA
Idioma: Español
Referencias bibliográficas: 73
Paginas: 166-179
Archivo PDF: 784.70 Kb.
RESUMEN
Las ribonucleasas, por definición, son enzimas con actividad hidrolítica que
degradan al RNA. Existe una gran variedad de estas enzimas; en este trabajo
nos centramos en la familia T2 para discutir, en particular, lo que se sabe sobre
las ribonucleasas más estudiadas de este grupo: las S-RNasas. Las S-RNasas
son clave para evitar la autopolinización en varias familias de angiospermas,
actuando como la determinante S femenina del sistema de autoincompatibilidad
conocido como “basado en S-RNasas”. Esto implica que están involucradas
de manera muy precisa en el reconocimiento y discriminación del
polen propio y del no propio, para rechazar al propio. Esta función de gran
relevancia evolutiva, ampliamente distribuida en las angiospermas, involucra
atributos enzimáticos –por su actividad de ribonucleasa– y estructurales, así
como su capacidad para interaccionar con otras proteínas. Por lo tanto, la
función de las S-RNasas en el rechazo específico del polen propio es
compleja desde el punto de vista bioquímico (estructural, enzimático y de
interacción) y celular (localización y transporte). Conforme surgen evidencias
al respecto, es claro que el papel biológico de las S-RNasas no solo recae en
su función catalítica como ribonucleasas, sino que, en realidad, su mecanismo
de acción es más complejo. La comprensión de la complejidad de este
mecanismo de acción subraya la importancia de continuar investigando para
desentrañar completamente su papel biológico en la reproducción y evolución
de las angiospermas.
REFERENCIAS (EN ESTE ARTÍCULO)
Egami F, Nakamura K. Classification ofEnzymes Attacking RNA. En: MicrobialRibonucleases. Molecular Biology Biochemistryand Biophysics, vol 6. Editores: Egami F, NakamuraK. Springer-Verlag New York; 1969. p. 3-6.
Deshpande RA, Shankar V. Ribonucleases fromT2 family. Crit Rev Microbiol. 2002; 28(2):79-122.
Irie M. Structure-function relationships of acidribonucleases: lysosomal, vacuolar, and periplasmicenzymes. Pharmacol Ther. 1999; 81(2):77-89.
Luhtala N, Parker R. T2 Family ribonucleases:ancient enzymes with diverse roles. TrendsBiochem Sci. 2010; 35(5):253-259.
Irie M, Ohgi K, Iwama M, Koizumi M,Sasayama E, Harada K, Yano Y, Udagawa J,Kawasaki M. Role of histidine 46 in the hydrolysisand the reverse transphosphorylation reaction ofRNase Rh from Rhizopus niveus. J Biochem.1997; 121(5):849-853.
Rodriguez SM, Panjikar S, Van Belle K, WynsL, Messens J, Loris R. Nonspecific base recognitionmediated by water bridges and hydrophobicstacking in ribonuclease I from Escherichia coli.Protein Sci. 2008; 17(4):681-690.
Kurihara H, Nonaka T, Mitsui Y, Ohgi K, IrieM, Nakamura KT. The crystal structure ofribonuclease Rh from Rhizopus niveus at 2.0 Åresolution. J Mol Biol. 1996; 255(2):310-320.
Tanaka N, Arai J, Inokuchi N, Koyama T, OhgiK, Irie M, Nakamura KT. Crystal structure of a plantribonuclease, RNase LE. J Mol Biol. 2000;298(5):859-873.
MacIntosh GC. RNase T2 family: enzymaticproperties, functional diversity, and evolution ofancient ribonucleases. En: Nicholson A, editor.Ribonucleases. Nucleic Acids and MolecularBiology. Berlin, Heidelberg: Springer; 2011. p. 89-114.
Lv S, Qiao X, Zhang W, Li Q, Wang P, ZhangS, Wu J. The origin and evolution of RNase T2family and gametophytic self-incompatibilitysystem in plants. Genome Biol Evol.2022; 14(7):evac093.
Igic B, Kohn JR. Evolutionary relationshipsamong self-incompatibility RNases. Proc Natl AcadSci USA. 2001; 98(23):13167-13171.
Hillwig MS, Liu X, Liu G, Thornburg RW,MacIntosh GC. Petunia nectar proteins haveribonuclease activity. J Exp Bot.2010; 61(11):2951-2965.
MacIntosh GC, Hillwig MS, Meyer A, Flagel L.RNase T2 genes from rice and the evolution ofsecretory ribonucleases in plants. Mol GenetGenomics. 2010; 283(4):381-396.
Ramanauskas K, Igić B. The evolutionaryhistory of plant T2/S-type ribonucleases. PeerJ.2017; 5:e3790.
Murfett J, Atherton TL, Mou B, Gassert CS,McClure BA. S-RNase expressed in transgenicNicotiana causes S-allele-specific pollen rejection.Nature. 1994; 367(6463):563-566.
McClure BA, Gray JE, Anderson MA, ClarkeAE. Self-incompatibility in Nicotiana alatainvolves degradation of pollen rRNA. Nature.1990; 347(6295):757-760.
Green PJ. The ribonucleases of higherplants. Annu Rev Plant Biol. 1994; 45(1):421-445.
Vieira J, Fonseca NA, Vieira CP. An S-RNasebasedgametophytic self-incompatibility systemevolved only once in eudicots. J Mol Evol.2008; 67(2):179-190.
Ioerger TR, Gohlke JR, Xu B, Kao TH. Primarystructural features of the self-incompatibility proteinin Solanaceae. Sex Plant Reprod. 1991; 4(2):81-87.
Tsai DS, Lee HS, Post LC, Kreiling KM, KaoTH. Sequence of an S-protein of Lycopersiconperuvianum and comparison with other solanaceousS-proteins. Sex Plant Reprod. 1992; 5(4):256-263.
Ida K, Norioka S, Yamamoto M, Kumasaka T,Yamashita E, Newbigin ED, Clarke AE, SakiyamaF, Sato M. The 1.55 Å resolution structure ofNicotiana alata SF11-RNase associated withgametophytic self-incompatibility. J MolBiol. 2001; 314(1):103-112.
Matton DP, Maes O, Laublin G, Xike Q,Bertrand C, Morse D, Cappadocia M. Hypervariabledomains of self-incompatibility RNases mediateallele-specific pollen recognition. Plant Cell.1997; 9(10):1757-1766.
Sassa H, Nishio T, Kowyama Y, Hirano H, KobaT, Ikehashi H. Self-incompatibility (S) alleles of theRosaceae encode members of a distinct class of theT2/S ribonuclease superfamily. Mol Gen Genet.1996; 250(5):547-557.
Ushijima K, Sassa H, Tao R, Yamane H,Dandekar AM, Gradziel TM, Hirano H. Cloning andcharacterization of cDNAs encoding S-RNasesfrom almond (Prunus dulcis): primary structuralfeatures and sequence diversity of the S-RNases inRosaceae. Mol Gen Genet. 1998; 260(2):261-268.
Matsuura T, Sakai H, Unno M, Ida K, Sato M,Sakiyama F, Norioka S. Crystal structure at 1.5-Åresolution of Pyrus pyrifolia pistil ribonucleaseresponsible for gametophytic self-incompatibility. JBiol Chem. 2001; 276(48):45261-45269.
Zisovich AH, Stern RA, Sapir G, Shafir S,Goldway M. The RHV region of S-RNase in theEuropean pear (Pyrus communis) is not required forthe determination of specific pollen rejection. SexPlant Reprod. 2004; 17(13):151-156.
Ishimizu T, Norioka S, Kanai M, Clarke AE,Sakiyama F. Location of cysteine and cystineresidues in S‐ribonucleases associated withgametophytic self‐incompatibility. Eur J Biochem.1996; 242(3):627-635.
de Nettancourt D. (1977). lncompatibility inAngiosperms. Springer-Verlag. Berlin. 230 pp.
Goring D, Cruz-Garcia F, Franklin-Tong V.Self-incompatibility. eLS. 2022; 3(3):1-12.
Kao TH, Tsukamoto T. The molecular andgenetic bases of S-RNase-based selfincompatibility.Plant Cell. 2004; 16(Supp. 1):S72-S83.
Asquini E, Gerdol M, Gasperini D, Igic B,Graziosi G, Pallavicini A. S-RNase-like sequencesin styles of Coffea (Rubiaceae). Evidence for SRNasebased gametophytic selfincompatibility?Trop Plant Biol. 2011; 4(4):237-249.
Liang M, Cao Z, Zhu A, Liu Y, Tao M, Yang H,Xu Q Jr, Wang S, Liu J, Li Y, Chen C, Xie Z, DengC, Ye J, Guo W, Xu Q, Xia R, Larkin RM, Deng M,Bosch M, Franklin-Tong VE, Chai L. Evolution ofself-compatibility by a mutant Sm-RNase incitrus. Nat Plants. 2020; 6(2):131-142.
Ramanauskas K, Igić B. RNase‐based selfincompatibilityin cacti. New Phytol.2021; 231(5):2039-2049.
de Nettancourt, D. (2001). Incompatibility andincongruity in wild and cultivated plants (Vol. 3).Springer-Verlag. Berlin. 322 pp.
Takayama S, Isogai A. Self-incompatibility inplants. Annu Rev Plant Biol. 2005; 56(1): 467-489.
Anderson MA, Cornish EC, Mau SL, WilliamsEG, Hoggart R, Atkinson A, Bonig I, Grego B,Simpson R, Roche PJ, Haley JD, Penschow JD,Niall HD, Tregear GW, Coghlan JP, Crawford RJ,Clarke AE. Cloning of cDNA for a stylarglycoprotein associated with expression of selfincompatibilityin Nicotiana alata. Nature. 1986;321(6065):38-44.
Lee HS, Huang S, Kao TH. S proteins controlrejection of incompatible pollen in Petuniainflata. Nature. 1994; 367(6463):560-563.
Huang S, Lee HS, Karunanandaa B, Kao TH.Ribonuclease activity of Petunia inflata S proteinsis essential for rejection of self-pollen. Plant Cell.1994; 6(7):1021-1028.
McClure BA, Haring V, Ebert PR, AndersonMA, Simpson RJ, Sakiyama F, Clarke, AE. Styleself-incompatibility gene products of Nicotlanaalata are ribonucleases. Nature.1989; 342(6252):955-957.
Kao TH, McCubbin AG. How flowering plantsdiscriminate between self and non-self pollen toprevent inbreeding. Proc Natl Acad Sci USA.1996; 93(22);12059-12065.
Luu DT, Qin X, Morse D, Cappadocia M. SRNaseuptake by compatible pollen tubes ingametophytic self-incompatibility. Nature.2000; 407(6804):649-651.
Goldraij A, Kondo K, Lee CB, Hancock CN,Sivaguru M, Vazquez-Santana S, Kim S, PhillipsTE, Cruz-García F, McClure B.Compartmentalization of S-RNase and HT-Bdegradation in self-incompatible Nicotiana. Nature.2006; 439(7078):805-810.
Fujii S, Kubo KI, Takayama S. Non-self-andself-recognition models in plant selfincompatibility.Nat Plants. 2016; 2(9):16130.
McClure B, Cruz-García F, Romero C.Compatibility and incompatibility in S-RNasebasedsystems. Ann. Bot. 2011; 108(4):647-658.
Qiao H, Wang H, Zhao L, Zhou J, Huang J,Zhang Y, Xue Y. The F-box protein AhSLF-S2physically interacts with S-RNases that may beinhibited by the ubiquitin/26S proteasome pathwayof protein degradation during compatiblepollination in Antirrhinum. Plant Cell.2004; 16(3):582-595.
Hua Z, Kao TH. Identification andcharacterization of components of a putativePetunia S-locus F-box–containing E3 ligasecomplex involved in S-RNase–based selfincompatibility.Plant Cell. 2006; 18(10):2531-2553.
Kubo KI, Entani T, Takara A, Wang N, FieldsAM, Hua Z, Toyoda M, Kawashima SH, Ando T,Isogai A, Kao TH, Takayama S. Collaborative nonselfrecognition system in S-RNase–based selfincompatibility.Science. 2010; 330(6005):796-799.
Sun L, Williams JS, Li S, Wu L, Khatri WA,Stone PG, Keebaugh MD, Kao TH. S-locus F-boxproteins are solely responsible for S-RNase-basedself-incompatibility of Petunia pollen. Plant Cell.2018; 30(12):2959-2972.
Bai C, Sen P, Hofmann K, Ma L, Goebl M,Harper JW, Elledge SJ. SKP1 connects cell cycleregulators to the ubiquitin proteolysis machinerythrough a novel motif, the F-box. Cell.1996; 86(2):263-274.
Entani T, Kubo KI, Isogai S, Fukao Y,Shirakawa M, Isogai A, Takayama S. Ubiquitin–proteasome‐mediated degradation of S‐RNase in asolanaceous cross‐compatibility reaction. Plant J.2014; 78(6):1014-1021.
Liu W, Fan J, Li J, Song Y, Li Q, Zhang YE, XueY. SCF(SLF)-mediated cytosolic degradation of SRNaseis required for cross-pollen compatibility inS-RNase-based self-incompatibility in Petuniahybrida. Front Genet. 2014; 5:228.
Ushijima K, Sassa H, Dandekar AM, GradzielTM, Tao R, Hirano H. Structural and transcriptionalanalysis of the self-incompatibility locus of almond:identification of a pollen-expressed F-box gene withhaplotype-specific polymorphism. Plant Cell.2003; 15(3):771-781.
Sonneveld T, Tobutt, KR, Vaughan SP, RobbinsTP. Loss of pollen-S function in two self-compatibleselections of Prunus avium is associated withdeletion/mutation of an S haplotype–specific F-Boxgene. Plant Cell. 2005; 17(1):37-51.
Juárez-Díaz JA, McClure B, Vázquez-SantanaS, Guevara-García A, León-Mejía P, Márquez-Guzmán J, Cruz-García F. A novel thioredoxin h issecreted in Nicotiana alata and reduces S-RNase invitro. J Biol Chem. 2006; 281(6):3418-3424.
Torres‐Rodríguez MD, Cruz‐Zamora Y, Juárez‐Díaz JA, Mooney B, McClure BA, Cruz‐García F.NaTrxh is an essential protein for pollen rejection inNicotiana by increasing S‐RNase activity. PlantJ. 2020; 103(4):1304-1317.
Hogg PJ. Disulfide bonds as switches forprotein function. Trends Biochem Sci.2003; 28(4):210-214.
Henneke M, Diekmann S, Ohlenbusch A,Kaiser J, Engelbrecht V, Kohlschütter A, KrätznerR, Madruga-Garrido M, Mayer M, Opitz L,Rodriguez D, Rüschendorf F, Schumacher J, ThieleH, Thoms S, Steinfeld R, Nürnberg P, Gärtner J.RNASET2-deficient cystic leukoencephalopathyresembles congenital cytomegalovirus braininfection. Nat Genet. 2009; 41(7):773-775.
Liu ZQ, Xu GH, Zhang SL. Pyrus pyrifoliastylar S-RNase induces alterations in the actincytoskeleton in self-pollen and tubes invitro. Protoplasma. 2007; 232(1-2):61-67.
Roldán JA, Rojas HJ, Goldraij A.Disorganization of F-actin cytoskeleton precedesvacuolar disruption in pollen tubes during the invivo self-incompatibility response in Nicotianaalata. Ann Bot. 2012; 110(4):787-795.
Soulard J, Boivin N, Morse D, Cappadocia, M.(2014). eEF1A is an S-RNase binding factor in selfincompatibleSolanum chacoense. PLoS One.2014; 9(2):e90206.
Chen J, Wang P, De Graaf BH, Zhang H, Jiao H,Tang C, Zhang S, Wu J. Phosphatidic acidcounteracts S-RNase signaling in pollen bystabilizing the actin cytoskeleton. Plant Cell.2018; 30(5):1023-1039.
Chebli Y, Geitmann A. Mechanical principlesgoverning pollen tube growth. Funct Plant SciBiotechnol. 2007; 1(2):232-245.
Poulter NS, Staiger CJ, Rappoport JZ, Franklin-Tong VE. Actin-binding proteins implicated in theformation of the punctate actin foci stimulated bythe self-incompatibility response in Papaver. PlantPhysiol. 2010; 152(3):1274-1283.
Yang Q, Meng D, Gu Z, Li W, Chen Q, Li Y,Yuan H, Yu J, Liu C, Li T. Apple S‐RNase interactswith an actin‐binding protein, MdMVG, to reducepollen tube growth by inhibiting its actin‐severingactivity at the early stage of self‐pollinationinduction. Plant J. 2018; 95(1):41-56.
Wang CL, Xu GH, Jiang XT, Chen G, Wu J, WuHQ, Zhang SL. S‐RNase triggers mitochondrialalteration and DNA degradation in the incompatiblepollen tube of Pyrus pyrifolia in vitro. Plant J.2009; 57(2):220-229.
Wang CL, Wu J, Xu GH, Gao YB, Chen G, WuJY, Wu HQ, Zhang SL. S-RNase disrupts tiplocalizedreactive oxygen species and inducesnuclear DNA degradation in incompatible pollentubes of Pyrus pyrifolia. J Cell Sci.2010; 123(24):4301-4309.
Kong XX, Mei JW, Zhang J, Liu X, Wu JY,Wang CL. Turnover of diacylglycerol kinase 4 bycytoplasmic acidification induces vacuolemorphological change and nuclear DNAdegradation in the early stage of pear selfincompatibilityresponse. J Integr Plant Biol.2021; 63(12): 2123-2135.
Wu L, Liu X, Zhang MY, Qi KJ, Jiang XT, YaoJL, Zhang SL, Gu C. Self S‐RNase inhibits ABF–LRX signaling to arrest pollen tube growth toachieve self‐incompatibility in pear. Plant J.2023; 113(3):595-609.
Wu L, Xu Y, Qi K, Jiang X, He M, Cui Y, BaoJ, Gu C, Zhang S. Self S-RNase reduces theexpression of two pollen-specific COBRA genes toinhibit pollen tube growth in pear. Mol Hortic.2023; 3(1):26.
Tang C, Wang P, Zhu X, Qi K, Xie Z, Zhang H,Li X, Gao H, Gu T, Gu C, Li S, de Graaf BHJ, ZhangS, Wu J. Acetylation of inorganic pyrophosphataseby S-RNase signaling induces pollen tube tipswelling by repressing pectin methylesterase. PlantCell. 2023; 35(9), 3544–3565
Li W, Meng D, Gu Z, Yang Q, Yuan H, Li Y,Chen Q, Yu J, Liu C, Li, T. Apple S‐RNase triggersinhibition of tRNA aminoacylation by interactingwith a soluble inorganic pyrophosphatase ingrowing self‐pollen tubes in vitro. New Phytol.2018; 218(2):579-593.
Tian H, Zhang H, Huang H, Zhang YE, Xue Y.Phase separation of S‐RNase promotes selfincompatibilityin Petunia hybrida. J Integr PlantBiol. 2024; 66(5):986-1006.
Matsumoto D, Tao R. Distinct self-recognitionin the Prunus S-RNase-based gametophytic selfincompatibilitysystem. Hort J. 2016; 85(4):289-305.