2023, Número 4
<< Anterior Siguiente >>
Neumol Cir Torax 2023; 82 (4)
Difusión pulmonar de monóxido de carbono: actualizaciones en las recomendaciones y procedimiento
Centeno-Sáenz GI, Alvarado-Amador I, Almonte-Mora F, Castillo-Ayala AE, Camacho-Jiménez AU, Guinto-Ramírez P, Pérez-Kawabe KM, Pérez-Padilla R, Gochicoa-Rangel L, Torre-Bouscoulet L, Thirión-Romero I
Idioma: Español
Referencias bibliográficas: 50
Paginas: 233-247
Archivo PDF: 539.51 Kb.
RESUMEN
La capacidad de difusión pulmonar de monóxido de carbono
es una prueba que permite evaluar cuantitativamente la transferencia
de oxígeno del aire alveolar a la hemoglobina sanguínea a través de la
membrana alveolocapilar. Desde su descripción original en 1957, la
prueba de difusión pulmonar de monóxido de carbono ha evolucionado
gracias al advenimiento de los analizadores de gases de respuesta rápida.
Actualmente, el método de medición de respiración única está sólidamente
estandarizado y es el recomendado con fines clínicos. La prueba
de difusión pulmonar de monóxido de carbono de respiración única tiene
implicaciones tanto para el diagnóstico como para el seguimiento y el
pronóstico de pacientes con enfermedades crónicas no sólo del sistema
respiratorio. Este documento se actualiza con información propuesta por
la
European Respiratory Society y de la
American Thoracic Society en los
estándares de los años 2005, 2017 y 2021 e incluye las recomendaciones
técnicas para sistemas de respiración única basados en los analizadores
de gases de respuesta rápida aceptadas internacionalmente. A pesar de
su valor clínicamente comprobado, la difusión pulmonar de monóxido de
carbono es subutilizada, aunque se posiciona como la segunda prueba
más importante después de la espirometría. Sin embargo, su relevancia
es especialmente destacada en pacientes con enfermedades pulmonares
intersticiales, enfisema y enfermedades vasculares pulmonares.
REFERENCIAS (EN ESTE ARTÍCULO)
Ogilvie CM, Forster RE, Blakemore WS, Morton JW. A standardizedbreath holding technique for the clinical measurement of the diffusingcapacity of the lung for carbon monoxide 1. J Clin Invest. 1957;36(1Pt 1):1-17. Available in: http://www.jci.org/articles/view/103402
Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, KendrickA, et al. 2017 ERS/ATS standards for single-breath carbon monoxideuptake in the lung. Eur Respir J. 2017;49(1):1600016. Available in:https://doi.org/10.1183/13993003.00016-2016
Neder JA, Berton DC, Muller PT, O’Donnell DE. Incorporating lungdiffusing capacity for carbon monoxide in clinical decision making inchest medicine. Clin Chest Med. 2019;40(2):285-305. Available in:https://doi.org/10.1016/j.ccm.2019.02.005
Baldini M, Chiapella MN, Fernandez A, Guardia S, De Vito EL, SalaH, et al. Capacidad de difusión de monóxido de carbono, pautas parasu interpretación. 4 ed. Buenos Aires: Medicina; 2020. p. 359-730.
Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardizationof the measurement of transfer factor (diffusing capacity). reportworking party standardization of lung function Tests, EuropeanCommunity for Steel and Coal. Official Statement of the EuropeanRespiratory Society. Eur Respir J Suppl. 1993;16:41-52. Available in:http://www.ncbi.nlm.nih.gov/pubmed/8499053
Huang YCT, O’Brien SR, MacIntyre NR. Intrabreath diffusing capacityof the lung in healthy individuals at rest and during exercise. Chest.2002;122(1):177-185. Available in: https://linkinghub.elsevier.com/retrieve/pii/S0012369216462963
Hughes JMB, Bates DV. Historical review: the carbon monoxide diffusingcapacity (DlCO) and its membrane (Dm) and red cell (Θ Vc) components.Respir Physiol Neurobiol. 2003;138(2-3):115-142. Available in: https://linkinghub.elsevier.com/retrieve/pii/S1569904803002131
Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM,Brusasco V, et al. Standardisation of the single-breath determinationof carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720-735. Available in: https://doi.org/10.1183/09031936.05.00034905
Wise RA, Teeter JG, Jensen RL, England RD, Schwartz PF, GilesDR, et al. Standardization of the single-breath diffusing capacity ina multicenter clinical trial. Chest. 2007;132(4):1191-1197. Available in:https://linkinghub.elsevier.com/retrieve/pii/S001236921536712X
Crapo RO, Jensen RL, Wanger JS. Single-breath carbon monoxidediffusing capacity. Clin Chest Med. 2001;22(4):637-649. Available in:https://doi.org/10.1016/s0272-5231(05)70057-5
Stanojevic S, Kaminsky DA, Miller MR, Thompson B,Aliverti A, Barjaktarevic I, et al. ERS/ATS technical standardon interpretive strategies for routine lung function tests.Eur Respir J. 2022;60(1):2101499. Available in: https://doi.org/10.1183/13993003.01499-2021
Jensen RL, Crapo RO. Diffusing capacity: how to get it right. RespirCare. 2003;48(8):777-782. Available in: http://www.ncbi.nlm.nih.gov/pubmed/12890298
Balasubramanian A, Putcha N, MacIntyre NR, Jensen RL, KinneyG, Stringer WW, et al. Diffusing capacity and mortality in chronicobstructive pulmonary disease. Ann Am Thorac Soc. 2023;20(1):38-46. Available in: https://doi.org/10.1513/annalsats.202203-226oc
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, JohkohT, et al. Idiopathic pulmonary fibrosis (an Update) and progressivepulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT ClinicalPractice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18-e47.Available in: https://doi.org/10.1164/rccm.202202-0399st
Sivova N, Launay D, Wémeau-Stervinou L, De Groote P, Remy-JardinM, Denis G, et al. Relevance of partitioning DLCO to detect pulmonaryhypertension in systemic sclerosis. PLoS One. 2013;8(10):e78001.Available in: https://doi.org/10.1371/journal.pone.0078001
Mohsenifar Z, Brown HV, Schnitzer B, Prause JA, Koerner SK.The effect of abnormal levels of hematocrit on the single breathdiffusing capacity. Lung. 1982;160(6):325-330. Available in: https://doi.org/10.1007/bf02719308
Holley AB, Carbone T, Holtzclaw AW, Huprikar NA, Wagner R,Morris MJ. Obesity-related changes in diffusing capacity andtransfer coefficient of the lung for carbon monoxide and resultingpatterns of abnormality across reference equations. Ann Am ThoracSoc. 2023;20(7):969-975. Available in: https://doi.org/10.1513/annalsats.202207-640oc
Coburn RF, Forster RE, Kane PB. Considerations of the physiologicalvariables that determine the blood carboxyhemoglobin concentrationin man. J Clin Invest. 1965;44(11):1899-1910. Available in: https://doi.org/10.1172/jci105296
Cooper BG. An update on contraindications for lung function testing.Thorax. 2011;66(8):714-723. Available in: https://doi.org/10.1136/thx.2010.139881
Schonffeldt-Guerrero P, Gochicoa-Rangel L, Aguirre Franco C, ArceSC, Rodríguez Flores C. ALAT 2023 Recommendations for PerformingRespiratory Function Studies. Arch Bronconeumol. 2023;59(10):619-620. Available in: https://doi.org/10.1016/j.arbres.2023.04.004
Haynes JM, Ruppel GL, Kaminsky DA. Should diffusing capacityquality control be treated like other laboratory devices? Eur RespirJ. 2021;58(6):2102642. Available in: http://www.ncbi.nlm.nih.gov/pubmed/34737225
Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, CooperBG, Hall GL, et al. Standardization of Spirometry 2019 Update. AnOfficial American Thoracic Society and European Respiratory SocietyTechnical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88.Available in: https://doi.org/10.1164/rccm.201908-1590st
DeCato TW, Hegewald MJ. Breathing red: Physiology of an elevatedsingle-breath diffusing capacity of carbon monoxide. Ann Am ThoracSoc. 2016;13(11):2087-2092. Available in: https://doi.org/10.1513/annalsats.201605-355cc
Zavorsky GS. The rise in carboxyhemoglobin from repeated pulmonarydiffusing capacity tests. Respir Physiol Neurobiol. 2013;186(1):103-108. Available in: https://doi.org/10.1016/j.resp.2013.01.001
Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW,Francis RW, et al. Official ERS technical standards: Global LungFunction Initiative reference values for the carbon monoxide transferfactor for Caucasians. Eur Respir J. 2017;50(3):1700010. Availablein: https://doi.org/10.1183/13993003.00010-2017
Gray G, Zamel N, Crapo RO. Effect of a simulated 3,048 meter altitudeon the single-breath transfer factor. Bull Eur Physiopathol Respir.1986;22(5):429-431.
Kirla KT, Nemes S, Betts J, Kristensson C, Mo J, Asimus S, et al.Diurnal variation in DLCO and non-standardized study proceduresmay cause a false positive safety signal in clinical trials. RespirMed. 2022;191:106705. Available in: https://doi.org/10.1016/j.rmed.2021.106705
Sansores RH, Abboud RT, Kennell C, Haynes N. The effect ofmenstruation on the pulmonary carbon monoxide diffusing capacity.Am J Respir Crit Care Med. 1995;152(1):381-384. Available in: https://doi.org/10.1164/ajrccm.152.1.7599851
Simeone F, Wiese J, Glindmeyer H, Lasky J. The effects ofethanol ingestion on the accuracy of pulmonary diffusing capacitymeasurement. Chest. 2005;128(6):3875-3880. Available in: https://doi.org/10.1378/chest.128.6.3875
Peavy HH, Summer WR, Gurtner G. The effects of acute ethanolingestion on pulmonary diffusing capacity. Chest. 1980;77(4):488-492.Available in: https://doi.org/10.1378/chest.77.4.488
Garcia-Rio F, Miravitlles M, Soriano JB, Cosío BG, Soler-Cataluña JJ,Casanova C, et al. Prevalence of reduced lung diffusing capacity andCT scan findings in smokers without airflow limitation: a populationbasedstudy. BMJ Open Respir Res. 2023;10(1):e001468. Availablein: https://doi.org/10.1136/bmjresp-2022-001468
Gazioglu K, Kaltreider NL, Rosen M, Yu PN. Pulmonary function duringpregnancy in normal women and in patients with cardiopulmonarydisease. Thorax. 1970;25(4):445-450. Available in: https://doi.org/10.1136/thx.25.4.445
Milne JA, Mills RJ, Coutts JR, Macnaughton MC, Moran F, Pack AI. Theeffect of human pregnancy on the pulmonary transfer factor for carbonmonoxide as measured by the single-breath method. Clin Sci Mol Med.1977;53(3):271-276. Available in: https://doi.org/10.1042/cs0530271
Balasubramanian A, MacIntyre NR, Henderson RJ, Jensen RL,Kinney G, Stringer WW, et al. Diffusing capacity of carbon monoxidein assessment of COPD. Chest. 2019;156(6):1111-1119. Available in:https://doi.org/10.1016/j.chest.2019.06.035
Hughes JMB, Pride NB. Examination of the carbon monoxide diffusingcapacity (DLCO) in relation to its KCO and VA components. Am JRespir Crit Care Med. 2012;186(2):132-139. Available in: https://doi.org/10.1164/rccm.201112-2160ci
McGrath MW, Thomson ML. The effect of age, body size and lungvolume change on alveolar-capillary permeability and diffusingcapacity in man. J Physiol. 1959;146(3):572-582. Available in: https://doi.org/10.1113/jphysiol.1959.sp006212
Gochicoa-Rangel L, Del-Río-Hidalgo R, Álvarez-Arroyo MR,Martínez-Briseño D, Mora-Romero U, Martínez-Valdeavellano L, etal. Diffusing capacity of the lung for carbon monoxide in Mexican/Latino children. Quality control and reference values. Ann AmThorac Soc. 2019;16(2):240-247. Available in: https://doi.org/10.1513/annalsats.201712-922oc
Vázquez-García JC, Pérez-Padilla R, Casas A, Schonffeldt-GuerreroP, Pereira J, Vargas-Domínguez C, et al. Reference values forthe diffusing capacity determined by the single-breath techniqueat different altitudes: the Latin American Single-Breath DiffusingCapacity Reference Project. Respir Care [Internet]. 2016;61(9):1217-1223. Available in: http://www.ncbi.nlm.nih.gov/pubmed/27587868
DeCato TW, Hegewald MJ. Breathing red: physiology of an elevatedsingle-breath diffusing capacity of carbon monoxide. Ann Am ThoracSoc. 2016;13(11):2087-2092. Available in: https://doi.org/10.1513/annalsats.201605-355cc
Hughes M. The Roughton-Forster equation for pulmonary diffusion:how it happened. Eur Respir J. 2022;60(1):2200789. Available in:https://doi.org/10.1183/13993003.00789-2022
Hughes JMB. Assessing gas exchange. Chron Respir Dis. 2007;4(4):205-214. Available in: https://doi.org/10.1177/1479972307084446
Hsia CCW. Recruitment of lung diffusing capacity: update of conceptand application. Chest. 2002;122(5):1774-1783. Available in: https://doi.org/10.1378/chest.122.5.1774
Chaouat A, Adir Y. Diffusing capacity for carbon monoxide is areflection of the pulmonary microcirculation, but not only. Chest.2020;158(2):455-457. Available in: https://doi.org/10.1016/j.chest.2020.03.033
Hughes JMB. The single breath transfer factor (Tl,co) and the transfercoefficient (Kco): a window onto the pulmonary microcirculation. ClinPhysiol Funct Imaging. 2003;23(2):63-71. Available in: https://doi.org/10.1046/j.1475-097x.2003.00482.x
Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, KendrickA, et al. 2017 ERS/ATS standards for single-breath carbon monoxideuptake in the lung. Eur Respir J. 2017;49(1):1600016. Available in:https://doi.org/10.1183/13993003.00016-2016
Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, CooperBG, Hall GL, et al. Standardization of spirometry 2019 Update. AnOfficial American Thoracic Society and European Respiratory SocietyTechnical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88.Available in: https://doi.org/10.1164/rccm.201908-1590st
Jones RS, Meade F. A theoretical and experimental analysis ofanomalies in the estimation of pulmonary diffusing capacity by thesingle breath method. Q J Exp Physiol Cogn Med Sci. 1961;46:131-143. Available in: https://doi.org/10.1113/expphysiol.1961.sp001525
Coburn RF, Forster RE, Kane PB. Considerations of the physiologicalvariables that determine the blood carboxyhemoglobin concentrationin man. J Clin Invest. 1965;44(11):1899-1910. Available in: https://doi.org/10.1172/jci105296
Jensen RL, Crapo RO. Diffusing capacity: how to get it right. RespirCare. 2003;48(8):777-782. Available in: http://www.ncbi.nlm.nih.gov/pubmed/12890298
Zavorsky GS. The rise in carboxyhemoglobin from repeated pulmonarydiffusing capacity tests. Respir Physiol Neurobiol. 2013;186(1):103-108. Available in: https://doi.org/10.1016/j.resp.2013.01.001