2023, Número 4
<< Anterior Siguiente >>
Neumol Cir Torax 2023; 82 (4)
Exposición al Benzo[a]Antraceno emitido de los cigarrillos electrónicos y su asociación con la carcinogénesis pulmonar. Revisión descriptiva
Valencia-Cervantes J, Sierra-Vargas MP
Idioma: Ingles.
Referencias bibliográficas: 56
Paginas: 225-232
Archivo PDF: 407.14 Kb.
RESUMEN
El tabaquismo se asocia a varios efectos adversos para la salud, como enfermedades cardiovasculares y respiratorias, accidentes cerebrovasculares, cardiopatías coronarias y cáncer. A pesar de ello, su uso está muy extendido en todo el mundo. En las últimas dos décadas, los cigarrillos electrónicos han surgido como una alternativa para el uso de los cigarros convencionales. Sin embargo, el uso de cigarrillos electrónicos no está exento de efectos adversos, especialmente entre adolescentes y adultos jóvenes, donde se ha demostrado daño a nivel respiratorio, cardiovascular y neurológico. No obstante, se requiere mayor información sobre su posible asociación con la incidencia de cáncer. Los cigarrillos electrónicos producen un aerosol al calentar los e-líquidos, que consisten en mezclas de diversos compuestos, liberando material particulado, nicotina, propilenglicol, glicerina, etilenglicol, vitamina E, especies reactivas de oxígeno, metales pesados, compuestos orgánicos volátiles e hidrocarburos aromáticos policíclicos, donde se incluye al Benzo[a]Antraceno, capaz de activar el receptor de hidrocarburos de arilo, que a su vez modula la expresión y actividad de las enzimas del citocromo P450, favoreciendo la bioactivación de estos compuestos, promoviendo la mutagénesis y la carcinogénesis. Esta revisión describe el posible riesgo del contenido de Benzo[a]Antraceno en los cigarrillos electrónicos, su vía de activación-señalización y su asociación con la carcinogénesis pulmonar.
REFERENCIAS (EN ESTE ARTÍCULO)
Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Smoking Tobacco Use Prevalence 1990-2019. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME), 2021. doi: 10.6069/FVQE-GR75.
National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK179276/
Hiemstra PS, Bals R. Basic science of electronic cigarettes: assessment in cell culture and in vivo models. Respir Res. 2016;17(1):127. doi: 10.1186/s12931-016-0447-z.
Jerzy?ski T, Stimson GV, Shapiro H, Król G. Estimation of the global number of e-cigarette users in 2020. Harm Reduct J. 2021;18(1):109. doi: 10.1186/s12954-021-00556-7.
Jerzy?ski T, Stimson GV. Estimation of the global number of vapers: 82 million worldwide in 2021. Drugs Habits Soc Policy. 2023;24(2):91-103. doi: 10.1108/DHS-07-2022-0028.
Boakye E, Osuji N, Erhabor J, Obisesan O, Osei AD, Mirbolouk M, et al. Assessment of patterns in e-Cigarette use among adults in the US, 2017-2020. JAMA Netw Open. 2022;5(7):e2223266. doi: 10.1001/jamanetworkopen.2022.23266.
Dahal R, Bhattarai A, Adhikari K. Age and sex-related patterns of electronic cigarette use in the general population: Supporting a de novo substance use pattern. Popul Med. 2022;4:32. doi: 10.18332/popmed/157270.
Hahn J, Monakhova YB, Hengen J, Kohl-Himmelseher M, Schüssler J, Hahn H, et al. Electronic cigarettes: overview of chemical composition and exposure estimation. Tob Induc Dis. 2014;12(1):23. doi: 10.1186/s12971-014-0023-6.
Alshareef H, Omaye S. Toxicology of commonly found ingredients in e-Cigarettes: A brief review. Health. 2021;13(11):1396-1409. http://dx.doi.org/10.4236/health.2021.1311100.
Pinto MI, Thissen J, Hermes N, Cunningham A, Digard H, Murphy J. Chemical characterisation of the vapour emitted by an e-cigarette using a ceramic wick-based technology. Sci Rep. 2022;12(1):16497. doi: 10.1038/s41598-022-19761-w.
Nawi MN, Zain SM, Ng C, Fairulnizal MN. Chemical constituents in E-cigarette Liquids and Aerosols. J Environ Prot. 2020;11:664-681. doi: 10.4236/jep.2020.119040.
Kuehl PJ, McDonald JD, Weber DT, Khlystov A, Nystoriak MA, Conklin DJ. Composition of aerosols from thermal degradation of flavors used in ENDS and tobacco products. Inhal Toxicol. 2022;34(11-12):319-328. doi: 10.1080/08958378.2022.2103602.
Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(e1):e10-15. doi: 10.1136/tobaccocontrol-2014-052175.
Czoli CD, Goniewicz ML, Palumbo M, Leigh N, White CM, Hammond D. Identification of flavouring chemicals and potential toxicants in e-cigarette products in Ontario, Canada. Can J Public Health. 2019;110(5):542-550. doi: 10.17269/s41997-019-00208-1.
Beauval N, Antherieu S, Soyez M, Gengler N, Grova N, Howsam M. Chemical evaluation of electronic cigarettes: multicomponent analysis of liquid refills and their corresponding aerosols. J Anal Toxicol. 2017;41(8):670-678. doi: 10.1093/jat/bkx054.
Kosarac I, Kubwabo C, Fan X, Siddique S, Petraccone D, He W. Open characterization of vaping liquids in Canada: chemical profiles and trends. Front Chem. 2021;9:756716. doi: 10.3389/fchem.2021.756716.
Larcombe A, Allard S, Pringle P, Mead-Hunter R, Anderson N, Mullins B. Chemical analysis of fresh and aged Australian e-cigarette liquids. Med J Aust. 2022;216(1):27-32. doi: 10.5694/mja2.51280.
Zelinkova Z, Wenzl T. The Occurrence of 16 EPA PAHs in Food - A Review. Polycycl Aromat Compd. 2015;35(2-4):248-284. doi: 10.1080/10406638.2014.918550.
Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014;14(12):801-814. doi: 10.1038/nrc3846.
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18(3):207-250. doi: 10.1615/critreveukargeneexpr.v18.i3.20.
Gray JP, Hall GJ. Benz[a]anthracene. Encyclopedia of Toxicology (Third edition), Academic Press; 2014. p. 413-414. doi: 10.1016/B978-0-12-386454-3.00247-5.
Li Z, Kim HY, Tamura PJ, Harris CM, Harris TM, Stone MP. Role of a polycyclic aromatic hydrocarbon bay region ring in modulating DNA adduct structure: the non-bay region (8S,9R,10S, 11R)-N(6)-[11-(8,9,10,11-tetrahydro-8,9, 10-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct in codon 61 of the human N-ras protooncogene. Biochemistry. 1999;38(45):14820-14832. doi: 10.1021/bi991607z.
Song MK, Kim YJ, Song M, Choi HS, Park YK, Ryu JC. Formation of a 3,4-diol-1,2-epoxide metabolite of benz[a]anthracene with cytotoxicity and genotoxicity in a human in vitro hepatocyte culture system. Environ Toxicol Pharmacol. 2012;33(2):212-225. doi: 10.1016/j.etap.2011.12.020.
Wislocki PG, Kapitulnik J, Levin W, Lehr R, Schaefer-Ridder M, Karle JM, et al. Exceptional carcinogenic activity of benz[a]anthracene 3,4-dihydrodiol in the newborn mouse and the bay region theory. Cancer Res. 1978;38(3):693-696.
Wood AW, Levin W, Lu AY, Ryan D, West SB, Lehr RE, et al. Mutagenicity of metabolically activated benzo[a]anthracene 3,4-dihydrodiol: evidence for bay region activation of carcinogenic polycyclic hydrocarbons. Biochem Biophys Res Commun. 1976;72(2):680-686. doi: 10.1016/s0006-291x(76)80093-9.
Wood AW, Levin W, Chang RL, Lehr RE, Schaefer-Ridder M, Karle JM, et al. Tumorigenicity of five dihydrodiols of benz(a)anthracene on mouse skin: exceptional activity of benz(a)anthracene 3,4-dihydrodiol. Proc Natl Acad Sci U S A. 1977;74(8):3176-3179. doi: 10.1073/pnas.74.8.3176.
Wood AW, Chang RL, Levin W, Lehr RE, Schaefer-Ridder M, Karle JM, et al. Mutagenicity and cytotoxicity of benz[alpha]anthracene diol epoxides and tetrahydro-epoxides: exceptional activity of the bay region 1,2-epoxides. Proc Natl Acad Sci U S A. 1977;74(7):2746-2750. doi: 10.1073/pnas.74.7.2746.
Levin W, Chang RL, Wood AW, Thakker DR, Yagi H, Jerina DM, et al. Tumorigenicity of optical isomers of the diastereomeric bay-region 3,4-diol-1,2-epoxides of benzo(c)phenanthrene in murine tumor models. Cancer Res. 1986;46(5):2257-2261.
Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015;145(1):5-15. doi: 10.1093/toxsci/kfv040.
Chiba T, Chihara J, Furue M. Role of the arylhydrocarbon receptor (AhR) in the pathology of asthma and COPD. J Allergy (Cairo). 2012;2012:372384. doi: 10.1155/2012/372384.
Matsumoto Y, Ide F, Kishi R, Akutagawa T, Sakai S, Nakamura M, et al. Aryl hydrocarbon receptor plays a significant role in mediating airborne particulate-induced carcinogenesis in mice. Environ Sci Technol. 2007;41(10):3775-3780. doi: 10.1021/es062793g.
Lin P, Chang H, Tsai WT, Wu MH, Liao YS, Chen JT, et al. Overexpression of aryl hydrocarbon receptor in human lung carcinomas. Toxicol Pathol. 2003;31(1):22-30. doi: 10.1080/01926230390173824.
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103-141. doi: 10.1016/j.pharmthera.2012.12.007.
Guengerich FP, Wilkey CJ, Phan TTN. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J Biol Chem. 2019;294(28):10928-10941. doi: 10.1074/jbc.ra119.009305.
Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 2004;95(1):1-6. doi: 10.1111/j.1349-7006.2004.tb03162.x.
Shimada T, Guengerich FP. Inhibition of human cytochrome P450 1A1-, 1A2-and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem Res Toxicol. 2006;19(2):288-294. doi: 10.1021/tx050291v.
Hukkanen J, Pelkonen O, Raunio H. Expression of xenobiotic-metabolizing enzymes in human pulmonary tissue: possible role in susceptibility for ILD. Eur Respir J Suppl. 2001;32:122s-126s.
Abdel-Shafy HI, Mansour M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egypt J Petrol. 2016;25(1):107-123. doi: 10.1016/j.ejpe.2015.03.011.
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. Biochim Open. 2018;7:1-9. doi: 10.1016/j.biopen.2018.05.001.
Schier JG, Meiman JG, Layden J, Mikosz CA, VanFrank B, King BA, et al.; CDC 2019 Lung Injury Response Group. Severe pulmonary disease associated with Electronic-Cigarette-Product Use - Interim Guidance. MMWR Morb Mortal Wkly Rep. 2019;68(36):787-790. doi: 10.15585/mmwr.mm6836e2 Erratum in: MMWR Morb Mortal Wkly Rep. 2019;68(38):830. doi: 10.15585/mmwr.mm6838a4.
Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, et al. Chronic E-Cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018;198(1):67-76. doi: 10.1164/rccm.201710-2033oc.
Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, et al. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol Sci. 2017;155(1):248-257. doi: 10.1093/toxsci/kfw198.
Blount BC, Karwowski MP, Shields PG, Morel-Espinosa M, Valentin-Blasini L, Gardner M, et al. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl J Med. 2020;382(8):697-705. doi: 10.1056/nejmoa1916433.
Werner AK, Koumans EH, Chatham-Stephens K, Salvatore PP, Armatas C, Byers P, et al. Lung Injury Response Mortality Working Group. Hospitalizations and Deaths Associated with EVALI. N Engl J Med. 2020;382(17):1589-1598. doi: 10.1056/nejmoa1915314.
Marques P, Piqueras L, Sanz MJ. An updated overview of e-cigarette impact on human health. Respir Res. 2021;22(1):151. doi: 10.1186/s12931-021-01737-5.
Wang L, Wang Y, Chen J, Liu P, Li M. A review of toxicity mechanism studies of electronic cigarettes on respiratory system. Int J Mol Sci. 2022;23(9):5030. doi: 10.3390/ijms23095030.
Canistro D, Vivarelli F, Cirillo S, Babot Marquillas C, Buschini A, Lazzaretti M, et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci Rep. 2017;7(1):2028. doi: 10.1038/s41598-017-02317-8.
Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I, Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed. 2015;5(3);182-189. doi: 10.1016/S2221-1691(15)30003-4.
Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir Res. 2018;19(1):78. doi: 10.1186/s12931-018-0778-z.
Cioroiu BI, Tarcau D, Cucu-Man S, Chisalita I, Cioroiu M. Polycyclic aromatic hydrocarbons in lung tissue of patients with pulmonary cancer from Romania. Influence according as demographic status and ABO phenotypes. Chemosphere. 2013;92(5):504-511. doi: 10.1016/j.chemosphere.2013.02.014.
Tang MS, Wu XR, Lee HW, Xia Y, Deng FM, Moreira AL, et al. Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Proc Natl Acad Sci U S A. 2019;116(43):21727-21731. doi: 10.1073/pnas.1911321116 Erratum in: Proc Natl Acad Sci U S A. 2019;116(45):22884. doi: 10.1073/pnas.1918000116.
Lee HW, Park SH, Weng MW, Wang HT, Huang WC, Lepor H, et al. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A. 2018;115(7):E1560-E1569. doi: 10.1073/pnas.1718185115.
Zahedi A, Phandthong R, Chaili A, Remark G, Talbot P. Epithelial-to-mesenchymal transition of A549 lung cancer cells exposed to electronic cigarettes. Lung Cancer. 2018;122:224-233. doi: 10.1016/j.lungcan.2018.06.010.
Tommasi S, Caliri AW, Caceres A, Moreno DE, Li M, Chen Y, et al. Deregulation of biologically significant genes and associated molecular pathways in the oral epithelium of electronic cigarette users. Int J Mol Sci. 2019;20(3):738. doi: 10.3390/ijms20030738.
Bracken-Clarke D, Kapoor D, Baird AM, Buchanan PJ, Gately K, Cuffe S, et al. Vaping and lung cancer - A review of current data and recommendations. Lung Cancer. 2021;153:11-20. doi: 10.1016/j.lungcan.2020.12.030.
Sahu R, Shah K, Malviya R, Paliwal D, Sagar S, Singh S, et al. E-Cigarettes and associated health risks: an update on cancer potential. Adv Respir Med. 2023;91(6):516-531. doi: 10.3390/arm91060038.