2022, Número 2
<< Anterior Siguiente >>
Biotecnol Apl 2022; 39 (2)
Producción de la proteína de fusión de la nucleocápsida del SARS-CoV-2-dominio extracelular de CD154 humano en el bioreactor analítico EscoVacciXcell-CelCradle™
Aragón H, Quintana M, Ferro W, Llamo A, Menéndez G, González M, García C, García J, Somoza M, Barrisonte Y, La O T, Carpio Y, Estrada MP, Valdés R
Idioma: Ingles.
Referencias bibliográficas: 34
Paginas: 2211-2216
Archivo PDF: 529.66 Kb.
RESUMEN
La proteína de la nucleocápsida (proteína N) del SARS-CoV-2 es altamente inmunogénica, se expresa abundantemente durante la infección, y puede usarse con fines vacunales, para el desarrollo de ensayos serológicos, y otros. Para tales fines, la misma se ha producido en células de suspensión o de anclaje. En este estudio, la proteína N del SARS-CoV-2 fusionada al dominio extracelular de la proteína CD154 humana (N-hCD154) se produjo en células HEK-293 cultivadas en el bioreactor analítico EscoVacciXcell CelCradle™ operado en modo continuo durante 35 días. Como resultados, la cantidad de células HEK-293 cuantificadas por BioNOC™II fue de 0,88 ± 0,27 × 106, la cantidad total de células HEK-293 osciló en el rango 547,9-898,2 × 106 células/día, su viabilidad entre 89,4-98,2 %, la secreción específica de 0,6 ± 0,01 pg/célula/día y la concentración de la proteína de fusión N-hCD154 por cosecha fue de 22,38 ± 2,6 μg/mL. La pureza promedio de la proteína N-hCD154 fue del 75 %, estimada en muestras de sobrenadante de cultivo. La aplicación del método de purificación con sulfato de amonio seguido de un paso de diafiltración, permitió incrementarla a más del 95 %. En resumen, la combinación del bioreactor analítico CelCradle™ empleado en el cultivo de las células HEK-293 operado en modo continuo con la precipitación con sulfato de amonio, seguido de un paso de diafiltración, permite obtener la proteína fusionada N-hCD154 con un recobrado medio y un nivel de pureza muy alto como para ser caracterizada en futuras investigaciones con fines medicinales.
REFERENCIAS (EN ESTE ARTÍCULO)
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med. 2020;382:727-33.
Adam D. 15 million people have died in the pandemic, WHO says. Nature; 2022; 605:206.
Lurie N, Saville M, Hatchett R, HaltonJ. Developing COVID-19 vaccinesat pandemic speed. N Engl J Med.2020;382:1969-73.
Gordon DE, Jang GM, Bouhaddou M,Xu J, Obernier K, White KM, et al. A SARSCoV-2 protein interaction map revealstargets for drug repurposing. Nature.2020;583(7816):459-68.
Sanders JM, Monogue ML, JodlowskiTZ, Cutrell JB. Pharmacologic treatmentsfor coronavirus disease 2019 (COVID-19): A review. J Am Med Association.2020;323(18):1824-36.
Lu R, Zhao X, Li J, Niu P, Yang B, WuH, et al., Genomic characterisation andepidemiology of 2019 novel coronavirus:implications for virus origins and receptorbinding, Lancet (London, England).2020;395(10224):565-74.
Ahmed SF, Quadeer AA, McKay MR.Preliminary identification of potential vaccinetargets for the COVID-19 coronavirus(SARS-CoV-2) based on SARS-CoV immunologicalstudies. Viruses. 2020;12(3):254.
Leung DTM, Chi Hang TF, Chun HungM, Sheung Chan PK, Cheung JLK, etal. Antibody response of patients withsevere acute respiratory syndrome (SARS)targets the viral nucleocapsid. J Infect Dis.2004;190(2):379-86.
Pietravalle F, Lecoanet-Henchoz S,Blasey H, Aubry JP, Elson G, EdgertonMD, et al. Human native soluble CD40Lis a biologically active trimer, processedinside microsomes. J Biol Chem. 1996;271: 5965-7.
Lederman S, Yellin MJ, Krichevsky A,Belko J, Lee JJ, Chess L. Identification of anovel surface protein on activated CD4+T cells that induces contact-dependentB cell differentiation (help). J Exp Med.1992;175(4):1091-101.
Lederman S, Yellin MJ, Inghirami G,Lee JJ, Knowles DM, Chess L. Molecularinteractions mediating T-B lymphocytecollaboration in human lymphoid follicles.Roles of T cell-B-cell-activating molecule(5c8 antigen) and CD40 in contact-dependenthelp. J Immunol. 1992;149:3817-26.
Sordo Y, Suarez M, Caraballo R, SardinaT, Brown E, Duarte C, et al. Humoraland cellular immune response in miceinduced by the classical swine fever virusE2 protein fused to the porcine CD154antigen. Biologicals. 2018;52:67-71.
García-Cordero J, Mendoza-RamirezJ, Fernández-Benavides D, Roa-VelazquezD, Filisola-Villaseñor J, Martínez-Frías SP,et al. Recombinant protein expression andpurification of N, S1, and RBD of SARSCoV-2 from mammalian cells and theirpotential applications. Diagnostics (Basel).2021;11(10):1808.
López-Muñoz AD, Kosik I, Holly J,Yewdell JW. Cell surface SARS-CoV-2nucleocapsid protein modulates innateand adaptive immunity. Sci Adv. 2022 Aug5;8(31):eabp9770.
Bellani CF, Ajeian J, Duffy L, Miotto M,Groenewegen L, Connon CJ. Scale-uptechnologies for the manufacture of adherentcells. Frontiers Nutr. 2020;7:5751146.
ESCO World Class Worldwide. Cel-CradleTM Cradle for High Density Cells.2021 [cited 2022 Jan 17]. Available from:https://escolifesciences.ru/products/download/9010287-VacciXcell-CelCradle-Brochure-A5-vB-LR.pdf
Patterson MK. Measurement of growthand viability of cells in culture. MethodsEnzymol, 1979;58:141-52.
Lowry OH, Rosebrough NJ, Farr AL,Randall RJ. Protein measurement withthe Folin phenol reagent. J Biol Chem.
1951;193(1):265-75.19. Laemmli UK. Cleavage of structuralproteins during the assembly ofthe head of bacteriophage T4. Nature.1970;227(5259):680-5.
Merten OW. Advances in cell culture:anchorage dependence. PhilosTrans R Soc Lond B Biol Sci.2015;370(1661):20140040.
Jagannathan S, Chaansha S, RajeshK, Santhiya T, Charles C, VenkataramanaKN. Standardization and assessment ofcell culture media quantities in roller polyethylene terephthalate bottles employed inthe industrial rabies viral vaccine production.Pakistan J Biol Sci. 2009;12:1246-52.
Hundt B, Best C, Schlawin N, KassnerH, Genzel Y, Reichl U. Establishment of amink enteritis vaccine production processin stirred-tank reactor and wave bioreactormicrocarrier culture in 1-10 L scale. Vaccine.2007;25(20):3987-95.
Julaey M, Hosseini M, Amani H. Stemcells culture bioreactor fluid flow, shearstress and microcarriers dispersion analysisusing computational fluid dynamics. J ApplBiotechnol Rep. 2019;3(2):425-31.
Odeleye AO, Marsh DT, OsborneMD, Lye GJ, Micheletti M. On the fluiddynamics of a laboratory scale singleusestirred bioreactor. Chem Eng Sci.2014;111(100):299-312.
Sánchez A, Rodríguez E, Casas J,Fernández J, Chisti Y. Shear rate in stirredtank and bubble column bioreactors.Chem Eng J. 2006;124(1-3):1-5.
Rafiq QA, Brosnan KM, Coopman K,Nienow A, Hewitt Ch. Culture of humanmesenchymal stem cells on microcarriersin a 5 l stirred-tank bioreactor. BiotechnolLett. 2013;35(8):1233-45.
Verbruggen S, Luining D, van Essen A,Post MJ. Bovine myoblast cell productionin a microcarriers-based system. Cytotechnology.2018;70(2):503-12.
Tan E, Chin CSH, Lim ZFS, Ng SK.HEK293 cell line as a platform to producerecombinant proteins and viralvectors. Front Bioeng Biotechnol. 2022;13(9):796991.
Pancawidyana D, Wriningati, SetyorinieEI, Restika KD, Suganda A. BHK-21 cellgrown on microcarrier system increasing thecapacity of rabies vaccine. Adv Health SciRes. 2019:19:48-51.
Rhazi H, Safini N, Mikou K, AlhyaneM, Tadlaoui KO, Lin X, et al. Productionof small ruminant morbillivirus, rift valleyfever virus and lumpy skin disease virus inCelCradle™ -500A bioreactors. BMC Vet Res.2021;17(1):93.
Rupley JA, Gratton E, Careri G. Waterand globular proteins. Trend Biochem Sci.1983;8(1):18-22.
Fan H, Ooi A, Tan Y, Wang S, Fang S, Liu D,et al. The nucleocapsid protein of coronavirusinfectious bronchitis virus: crystal structure ofits N-terminal domain and multimerizationproperties. Structure. 2005;13:1859-68.
Wingfield P. Protein precipitation usingammonium sulfate. Curr Protoc Protein Sci.2001 May;Appendix 3:Appendix 3F. doi:10.1002/0471140864.psa03fs13.
Chura-Chambi RM, Prieto-da-Silva ARB,Di Lela MM, Oliveira JE, Abreu PE.AMeirelesLR. High level SARS-CoV-2 nucleocapsid refoldingusing mild condition for inclusion bodiessolubilization. Application of high presureat pH 9.0. PLoS One. 2022;17(2):e0262591.