2022, Número 2
<< Anterior Siguiente >>
Rev Cubana Plant Med 2022; 27 (2)
Actividad antibacteriana de extractos de Oxandra longipetala R.E. Fr. (yaya morena) frente a algunas bacterias de interés clínico
Maestre PAE, Contreras MOI, Angulo OAA
Idioma: Español
Referencias bibliográficas: 32
Paginas:
Archivo PDF: 301.22 Kb.
RESUMEN
Introducción: Los productos vegetales representan una importante fuente de sustancias o metabolitos secundarios a los cuales se les ha encontrado una amplia actividad biológica (antiinflamatoria, antioxidante, antitumoral, antimicrobiana, entre otros). Son pocos los trabajos relacionados con la actividad antibacteriana de los extractos vegetales obtenidos de plantas del género Oxandra. De la especie Oxandra longipetala no existen reportes de actividad antibacteriana.
Objetivo: Evaluar la actividad antibacteriana in vitro de extractos de O. longipetala frente a algunas bacterias de interés clínico.
Métodos: Se obtuvieron extractos de hojas y corteza de O. longipetala por percolación. La actividad antibacteriana de los extractos acuosos, diclorometano y acetato de etilo contra las cepas Staphylococcus aureus ATCC 43300, S. aureus ATCC 29213, S. aureus ATCC 25923, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700603 y Pseudomonas aeruginosa ATCC 27853 se evaluó mediante métodos de difusión en agar y microdilución.
Resultados: Se evidenció inhibición de crecimiento bacteriano con 3 de los 4 extractos empleados, siendo el extracto acuoso y el extracto acetato de etilo de corteza los que presentaron mayor efecto inhibitorio frente a las bacterias en estudio.
Conclusiones: Los extractos acuosos, diclorometano y acetato de etilo obtenidos de las hojas y la corteza de O. longipetala tienen un buen potencial antibacteriano y constituyen una base para futuros estudios encaminados al aislamiento, elucidación y caracterización de los compuestos responsables de esta actividad.
REFERENCIAS (EN ESTE ARTÍCULO)
Dholvitayakhun A, Trachoo N, Narkkong NA, Cushnie TP. Using scanning and transmission electron microscopy to investigate the antibacterial mechanism of action of the medicinal plant Annona squamosa Linn. J Herb Med. 2017;7:31-6. DOI: https://doi.org/10.1016/j.hermed.2016.10.003
De Zoysa MH, Rathnayake H, Hewawasam RP, Wijayaratne WM. Determination of in Vitro Antimicrobial Activity of Five Sri Lankan Medicinal Plants against Selected Human Pathogenic Bacteria. Int J Microbiol. 2019. DOI: https://doi.org/10.1155/2019/7431439
Da Cruz RM, Zelli R, Benshain S, Siqueira JP, Luc Décout J. Synthesis and evaluation of new 2‐aminothiophene derivatives as Staphylococcus aureus efflux pump inhibitors. Chem Med Chem. 2020;15(8):716-25. DOI: https://doi.org/10.1002/cmdc.201900688
El Shazely B, Yu G, Johnston PR, Rolff J. Resistance Evolution Against Antimicrobial Peptides in Staphylococcus aureus Alters Pharmacodynamics Beyond the MIC. Front Microbiol. 2020;11:103. DOI: https://doi.org/10.3389/fmicb.2020.00103
Wikaningtyas P, Sukandar EY. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pac J Trop Biomed. 2016;6(1):16-9. DOI: https://doi.org/10.1016/j.apjtb.2015.08.003
Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: Epidemiology, detection and treatment options. Future Sci OA. 2020;6(3):FSO438. DOI: https://doi.org/10.2144/fsoa-2019-0098
Chatzopoulou M, Reynolds L. Role of antimicrobial restrictions in bacterial resistance control: a systematic literature review. J Hosp Infect. 2020;104(2):125-36. DOI: https://doi.org/10.1016/j.jhin.2019.09.011
Al-Mousa HH, Omar AA, Rosenthal VD, Salama MF, Aly NY, El-Dossoky Noweir M, et al. Device-associated infection rates, bacterial resistance, length of stay, and mortality in Kuwait: International Nosocomial Infection Consortium findings. Am J Infect Control. 2016;44(4):444-9. DOI: http://dx.doi.org/10.1016/j.ajic.2015.10.031
Khan HA, Baig FK, Mehboob R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed. 2017;7(5):478-82. DOI: https://doi.org/10.1016/j.apjtb.2017.01.019
Saxena S, Priyadarshi M, Saxena A, Singh R. Antimicrobial consumption and bacterial resistance pattern in patients admitted in I.C.U at a tertiary care center. J Infect Public Health. 2019;12(5):695-9. DOI: https://doi.org/10.1016/j.jiph.2019.03.014
Bonnet V, Dupont H, Glorion S, Aupée M, Kipnis E, Gérard JL, et al. Influence of bacterial resistance on mortality in intensive care units: a registry study from 2000 to 2013 (IICU Study). J Hosp Infect. 2019;102(3):317-24. DOI: https://doi.org/10.1016/j.jhin.2019.01.011
Callejas A, Fernández C, Ramos A, Múñez E, Sánchez I, Vargas JA. Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Med Clin (Barc). 2019;152(3):83-9. DOI: https://doi.org/10.1016/j.medcle.2018.12.003
Aminimoghadamfarouj N, Nematollahi A, Wiart C. Annonaceae: Bio-resource for tomorrow’s drug discovery. J Asian Nat Prod Res. 2011;13(5):465-76. DOI: https://doi.org/10.1080/10286020.2011.570265
Ambé AS, Guessennd NK, Ouattara D, Konan FK, Kanga Y, Béné K, et al. Botanical Survey, Phytochemical Investigation, and Antibacterial Activity of Aqueous Extract of Enantia polycarpa (DC) Engl. and Diels Stem Bark against Methicillin Resistant Staphylococcus aureus (MRSA). Phytothérapie. 2017;15(5):267-73. DOI: https://doi.org/10.1007/s10298-016-1057-4
Etame R, Mouokeu R, Poundeu F, Voukeng I, Cidjeu C, Tiabou A, et al. Effect of fractioning on antibacterial activity of n-butanol fraction from Enantia chlorantha stem bark methanol extract. BMC Complement Altern Med. 2019;19(1):56. DOI: https://doi.org/10.1186/s12906-019-2459-y
Bernal R, Gradstein SR, Celis M. Catálogo de plantas y líquenes de Colombia. 1ª ed. Bogotá: Universidad Nacional de Colombia; 2016 [acceso: 07/08/2021]. Disponible en: https://www.researchgate.net/profile/S-Gradstein/publication/328415051_Catalogo_de_plantas_y_liquenes_de_Colombia/links/5ca3c4bb92851c8e64aeb9fa/Catalogo-de-plantas-y-liquenes-de-Colombia.pdf
Méndez NA, Angulo A, Contreras O. Actividad antibacteriana in vitro de Curcuma longa (Zingiberaceae) frente a bacterias nosocomiales en Montería, Colombia. Rev Biol Trop. 2016;64(3):1201-8. DOI: http://dx.doi.org/10.15517/rbt.v64i3.20848
Santos AR, Benghi TG, Nepel A, Marques FA, Lobão AQ, Duarte MC, et al. In vitro Antiproliferative and Antibacterial Activities of Essential Oils from Four Species of Guatteria. Chem Biodivers. 2017;14(10). DOI: https://doi.org/10.1002/cbdv.201700097
Cortes D, Moreno L, Párraga J, Galán A, Cabedo N. Nuevos fármacos inspirados en Annonáceas. Rev Bras Frutic. 2014;36(Spec1):22-31. DOI: https://doi.org/10.1590/S0100-29452014000500003
Rinaldi MV, Díaz IE, Suffredini IB, Moreno PR. Alkaloids and biological activity of beribá (Annona hypoglauca). Brazilian J Pharmacogn. 2017;27(1):77-83. DOI: https://doi.org/10.1016/j.bjp.2016.08.006
Doddapaneni SJ, Amgoth C, Kalle AM, Suryadevara SN, Alapati KS. Antimicrobial and anticancer activity of AgNPs coated with Alphonsea sclerocarpa extract. 3 Biotech. 2018;8(3):156. DOI: https://doi.org/10.1007/s13205-018-1155-9
Angulo A, Cuca Suarez LE, Santafe G. Aporfinoides en hojas de Oxandra longipetala R. E. FR. (Annonaceae). Scientia et Technica. 2007;1(33). DOI: https://doi.org/10.22517/23447214.5821
Angulo A, Cuca Suarez LE, Santafe G, Torres O. Azafluorenonas en corteza de Oxandra longipetala R. E. FR. (Annonaceae). Scientia et Technica. 2007;1(33). DOI: https://doi.org/10.22517/23447214.6105
Valgas C, De Souza SM, Smânia EF, Smânia A. Screening methods to determine antibacterial activity of natural products. Brazilian J Microbiol. 2007;38(2):369-80. DOI: https://doi.org/10.1590/S1517-83822007000200034
Clinical and Laboratory Standards Institute. Métodos para Pruebas de sensibilidad a los antimicrobianos por dilución para bacterias que crecen en condiciones aeróbicas. Documento CLSI M07-A8. CLSI. 2009 [acceso: 07/08/2021];29(2):100. Disponible en: https://www.paho.org/hq/dmdocuments/2009/susceptibilidad-antimicrobiana-manual-pruebas-2009.pdf
Alves E, Guzman D, Figueroa J, Tello J, De Olivera D. Caracterización antimicrobiana y fisicoquímica de propóleos de Apis mellifera L. (Hymenoptera: Apidae) de la región andina colombiana. Acta Biológica Colombiana. 2011 [acceso: 07/08/2021];16(1):175-84. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2011000100013
Bauer A, Kirby W, Sherris J, Turck M. Antibiotic susceptibility testing by standarized single disk method. Am J Clin Pathol. 1966;45:149-58. DOI: https://doi.org/10.1093/ajcp/45.4_ts.493
Murillo J. Las Annonaceae de Colombia. Biota Colombiana. 2001;2(1). DOI: https://doi.org/10.21068/bc.v2i1.89
Rabelo D, Belém M, Barison A, Salomé K, Costa E, Araujo Da Silva FM, et al. Alcaloides isoquinolínicos e investigação das atividades antiplasmódica e antibacteriana de Guatteria citriodora (Annonaceae). Quim Nova. 2014;37(9). DOI: https://doi.org/10.5935/0100-4042.20140233
Pereira F, Madureira AM, Sancha S, Mulhovo S, Luo X, Duarte A, et al. Cleistochlamys kirkii chemical constituents: Antibacterial activity and synergistic effects against resistant Staphylococcus aureus strains. J Ethnopharmacol. DOI: http://dx.doi.org/10.1016/j.jep.2015.12.009
Rabêlo S, Da Costa M, Libório, R, Guedes da Silva J. Atividade antioxidante e antimicrobiana de extratos de atemoia (Annona cherimola Mill. x A. squamosa L.). Rev Bras Frutic. 2014;36(1):265-71. DOI: https://doi.org/10.1590/S0100-29452014000500031
El-Chaghaby G, Ahmad A, Ramis E. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves. Arab J Chem 2014;7(2):227-33. DOI: https://doi.org/10.1016/j.arabjc.2011.06.019