2024, Número 06
<< Anterior
Ginecol Obstet Mex 2024; 92 (06)
Vacuna nonavalente contra el virus del papiloma humano: una estrategia para prevenir el cáncer de cuello uterino
Anaya RAF
Idioma: Español
Referencias bibliográficas: 33
Paginas: 267-273
Archivo PDF: 208.61 Kb.
RESUMEN
Antecedentes: El cáncer de cuello uterino es un problema de salud pública debido
a su alta incidencia. Su causa principal es el virus del papiloma humano trasmitido por
contacto sexual. Una herramienta de prevención es la inmunización. En la actualidad
existen tres vacunas; de ellas, la nonavalente es la más reciente.
Objetivo: Investigar la bibliografía reciente y describir los desenlaces con la aplicación
de la vacuna nonavalente a pacientes con cáncer de cuello uterino.
Metodología: Búsqueda de artículos en la base de datos Pubmed con el descriptor
“nonavalente” y los términos MeSH “vacuna recombinante nonavalente contra el virus
del papiloma humano”, “vacunas contra el virus del papiloma humano” y “cáncer de
cuello uterino”; lo anterior con las reacciones adversas, efectividad y repercusión de
la vacuna nonavalente contra el cáncer de cuello uterino.
Resultados: Se encontraron 107 artículos de los que se excluyeron 80 por duplicados,
títulos confusos y resúmenes incompletos, sin aporte de datos referentes al estudio. Al
final, solo se analizaron 27 fuentes.
Conclusiones: La vacuna nonavalente tiene alcance en contra de cinco genotipos
de alto riesgo: más que otras vacunas. Es efectiva contra las enfermedades provocadas
por el virus del papiloma humano, incluidas las neoplasias intraepiteliales cervicales
y el cáncer de cuello uterino. Además, tiene un perfil de seguridad similar al de las
vacunas predecesoras, aunque su efectividad está ligada a otros factores.
REFERENCIAS (EN ESTE ARTÍCULO)
Harden ME, Munger K. Human papillomavirus molecularbiology. Mutat Res - Rev Mut Res 2017; 772: 3-12. https://doi.org/10.1016/j.mrrev.2016.07.002
Gravitt P, Winer R. Natural history of HPV infection acrossthe lifespan: role of viral latency. Viruses 2017; 9: 267.http://dx.doi.org/10.3390/v9100267
Graham SV. The human papillomavirus replication cycle,and its links to cancer progression: a comprehensivereview. Clin Sci 2017; 131 (17): 2201-21. https://doi.org/10.1042/CS20160786
Buskwofie A, David-West G, Clare CA. A Review ofCervical Cancer: Incidence and Disparities. J Natl MedAssoc 2020; 112 (2): 229-32. https://doi.org/10.1016/j.jnma.2020.03.002
Vu M, Yu J, Awolude OA, et al. Cervical cancer worldwide.Curr Probl Cancer 2018; 42 (5): 457-65. https://doi.org/10.1016/j.currproblcancer.2018.06.003
Yousefi Z, Aria H, Ghaedrahmati F, Bakhtiari T, et al. AnUpdate on human papilloma virus vaccines: History, types,protection and efficacy. Front Immunol 2022; 12. http://dx.doi.org/10.3389/fimmu.2021.805695
Aranda-Flores CE. Infección por el virus del papiloma humanoen varones. Ginecol Obstet Mex 2015; 83: 697-706.https://ginecologiayobstetricia.org.mx/articulo/infeccionpor-el-virus-del-papiloma-humano-en-varones
Lazcano-Ponce E, Salmerón J, González A, et al. Preventionand control of neoplasms associated with HPV in high-riskgroups in Mexico City: The Condesa Study. Salud PublicaMex 2018; 60 (6): 703-12. https://doi.org/10.21149/10034
Johnson CA, James D, Marzan A, Armaos M. Cervicalcancer: an overview of pathophysiology and management.Semin Oncol Nurs 2019; 35 (2): 166-74. https://doi.org/10.1016/j.soncn.2019.02.003
Durham DP, Ndeffo-Mbah ML, Skrip LA, Jones FK, et al.National and state-level impact and cost-effectivenessof nonavalent HPV vaccination in the United States. ProcNatl Acad Sci USA 2016; 113 (18): 5107-12. https://doi.org/10.1073/pnas.1515528113
Boiron L, Joura E, Largeron N, Prager B, et al. Estimatingthe cost-effectiveness profile of a universal vaccinationprogramme with a nine-valent HPV vaccine in Austria.BMC Infect Dis 2016; 16: 153. https://doi.org/10.1186/s12879-016-1483-5
Forster AS, Waller J. Taking stock and looking ahead: Behaviouralscience lessons for implementing the nonavalenthuman papillomavirus vaccine. Eur J Cancer 2016; 62: 96-102. https://doi.org/10.1016/j.ejca.2016.04.014
Riethmuller D, Jacquard AC, Lacau St Guily J, Aubin F, etal. Potential impact of a nonavalent HPV vaccine on theoccurrence of HPV-related diseases in France. BMC PublicHealth 2015; 15: 453. https://doi.org/10.1186/s12889-015-1779-1
Serrano B, Alemany L, Alonso de Ruiz P, Tous S, et al. Potentialimpact of a 9-valent HPV vaccine in HPV-related cervicaldisease in 4 emerging countries (Brazil, Mexico, India andChina). Cancer Epidemiology 2014; (38): 748-56. https://doi.org/10.1016/j.canep.2014.09.003
Egli-Gany D, Spaar Zographos A, Diebold J, Masserey SpicherV, et al. Human papillomavirus genotype distributionand socio-behavioural characteristics in women with cervicalpre-cancer and cancer at the start of a human papillomavirusvaccination programme: the CIN3+ plus study.BMC Cancer 2019; 19 (1): 111. https://doi.org/10.1186/s12885-018-5248-y
Inturrisi F, Lissenberg-Witte BI, Veldhuijzen NJ, Bogaards JA,et al. Estimating the direct effect of human papillomavirusvaccination on the lifetime risk of screen-detected cervicalprecancer. Int J Cancer 2021; 148 (2): 320-28. https://doi.org/10.1002/ijc.33207
Capra G, Giovannelli L, Matranga D, Bellavia C, et al. Potentialimpact of a nonavalent HPV vaccine on HPV relatedlow-and high-grade cervical intraepithelial lesions: A referral hospital-based study in Sicily. Hum Vaccin Immunother2017; 13 (8): 1839-43. https://doi.org/10.1080/21645515.2017.1319026
Petry KU, Bollaerts K, Bonanni P, Stanley M, et al. Estimationof the individual residual risk of cervical cancer aftervaccination with the nonavalent HPV vaccine. Hum VaccinImmunother 2018; 14 (7): 1800-6. https://doi.org/10.1080/21645515.2018.1450125
Mariani L, Preti M, Cristoforoni P, Stigliano CM, et al. Overviewof the benefits and potential issues of the nonavalentHPV vaccine. Int J Gynaecol Obstet 2017; 136 (3): 258-65.https://doi.org/10.1002/ijgo.12075
Ng SS, Hutubessy R, Chaiyakunapruk N. Systematic reviewof cost-effectiveness studies of human papillomavirus(HPV) vaccination: 9-Valent vaccine, gender-neutral andmultiple age cohort vaccination. Vaccine 2018; 36 (19):2529-44. https://doi.org/10.1016/j.vaccine.2018.03.024
Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impactand cost-effectiveness of 3 doses of 9-valent human papillomavirus(HPV) vaccine among US females previouslyvaccinated with 4-Valent HPV Vaccine. J Infect Dis 2016;213 (11): 1694-700. https://doi.org/10.1093/infdis/jiw046
Lopalco PL. Spotlight on the 9-valent HPV vaccine. DrugDes Devel Ther. 2017; 11: 35-44. https://doi.org/10.2147/DDDT.S91018
Mahumud RA, Alam K, Dunn J, Gow J. The cost-effectivenessof controlling cervical cancer using a new 9-valenthuman papillomavirus vaccine among school-aged girls inAustralia. PLoS One 2019; 14 (10): e0223658. https://doi.org/10.1371/journal.pone.0223658
Michaeli DT, Stoycheva S, Marcus SM, Zhang W, et al. Costeffectivenessof bivalent, quadrivalent, and nonavalent HPVVaccination in South Africa. Clin Drug Investig 2022; 42(4): 333-43. https://doi.org/10.1007/s40261-022-01138-6
Jiang Y, Ni W, Wu J. Cost-effectiveness and value-basedprices of the 9-valent human papillomavirus vaccine forthe prevention of cervical cancer in China: an economicmodelling analysis. BMJ Open 2019; 9 (11): e031186.https://doi.org/10.1136/bmjopen-2019-031186
Phua LC, Choi HCW, Wu J, Jit M, et al. Cost-effectivenessanalysis of the nonavalent human papillomavirus vaccinefor the prevention of cervical cancer in Singapore. Vaccine.2022; 39 (16): 2255-63. https://doi.org/10.1016/j.vaccine.2021.03.040
Naslazi E, Hontelez JAC, Naber SK, van Ballegooijen M, etal. The differential risk of cervical cancer in HPV-vaccinatedand -unvaccinated women: a mathematical modelingstudy. Cancer Epidemiol Biomarkers Prev 2021; 30 (5):912-19. https://doi.org/10.1158/1055-9965.EPI-20-1321
De la Fuente J, Aguado JJH, Martín MS, Boix PR, et al. Estimatingthe epidemiological impact and cost-effectivenessprofile of a nonavalent HPV vaccine in Spain. HumanVaccines & Immunotherapeutics 2019; 15 (7-8) 1949–61.http://dx.doi.org/10.1080/21645515.2018.1560770
Simms KT, Smith MA, Lew JB, Kitchener HC, et al. Will cervicalscreening remain cost-effective in women offered thenext generation nonavalent HPV vaccine? Results for fourdeveloped countries. Int J Cancer 2016; 139 (12): 2771-80.https://doi.org/10.1002/ijc.30392
Joura EA, Giuliano AR, Iversen OE, Bouchard C, et al. A9-valent HPV vaccine against infection and intraepithelialneoplasia in women. N Engl J Med 2015; 372 (8): 711-23.https://doi.org/10.1056/NEJMoa1405044
Toh ZQ, Kosasih J, Russell FM, Garland SM, et al. Recombinanthuman papillomavirus nonavalent vaccine in the preventionof cancers caused by human papillomavirus. InfectDrug Resist 2019; 12: 1951-67. https://doi.org/10.2147/IDR.S178381
Logroño IEN, Macías ACC, Macías LGC. Eficacia de la vacunanonavalente en la prevención de la infección por virus papilomahumano (HPV) y cáncer cervical. La Ciencia al Serviciode la Salud 2019; 9 (2): 30-7. http://revistas.espoch.edu.ec/index.php/cssn/article/view/88
Kharbanda EO, Vazquez-Benitez G, DeSilva MB, NalewayAL, et al. Association of inadvertent 9-valent human papillomavirusvaccine in pregnancy with spontaneous abortionand adverse birth outcomes. JAMA Netw Open 2021; 4 (4):e214340. https://doi.org/10.1001/jamanetworkopen.2021