2019, Número 1
Siguiente >>
Cir Card Mex 2019; 4 (1)
Un sistema anticalcificante. Opción contra la calcificación de las bioprótesis
Juárez-Hernández A, Masso-Rojas FA
Idioma: Español
Referencias bibliográficas: 49
Paginas: 1-7
Archivo PDF: 265.63 Kb.
RESUMEN
Las bioprótesis cardiacas son en la actualidad la mejor
opción para sustituir una válvula cardiaca enferma.
Desde hace varios años se sabe que el principal problema
de las bioprótesis es la calcificación (“mineralización”).
Por tanto, en nuestra institución, donde se tiene ya experiencia
de 35 años en la elaboración de bioprótesis, se
investigó y desarrolló un sistema para tratar de proteger
nuestras bioprótesis de este problema. Nuestras prótesis
originalmente se hicieron con duramadre y posteriormente
con pericardio bovino preservadas con glutaraldehído,
solución que prepara bien al tejido biológico,
pero que tiene el inconveniente de atraer calcio. El sistema
propuesto y probado fue el de agregar un aminoácido
sencillo, glicina, al tratamiento general. Este tratamiento
impide la adhesión de calcio al tejido biológico,
permitiéndole un tiempo de vida funcional más prolongado
que con el tratamiento convencional. A partir de
estudios in vitro e in vivo muy satisfactorios, se pasó a la
etapa clínica, en donde hasta el momento se han implantado
1362 prótesis en todas las posiciones con excelentes
resultados a 10 años.
REFERENCIAS (EN ESTE ARTÍCULO)
Ross D. The versatile homograft and autograft valve. Ann Thorac Surg 1989; 48:S69-70.
Ross DN, Somerville J. Correction of pulmonary atresia with a homograft aorticvalve. Lancet 1966; 2:1446-7.
Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a newtrileaflet mechanical heart valve. ASAIO Journal 2011; 57:188 –96.
Hwang NCH. Cavitation in mechanical heart valve prostheses. J Heart Valve Dis1998; 7: 140-50.
Liu JS, Lu PC, Chu SH. Turbulence characteristics downstream of bileaflet aorticvalve prostheses. J Biomech Eng 2000;122: 118–24.
Hanle DD, Harrison EC, Yoganathan AP, Corcoran WH. Turbulence downstreamfrom the Ionescu Shiley bioprosthesis in steady and pulsatile flow. Med Biol EngComput 1987;25: 645–9.
Nygaard H, Giersiepen M, Hasenkam JM, et al. Two-dimensional color-mappingof turbulent shear stress distribution downstream of two aortic bioprostheticvalves in vitro. J Biomech 1992; 25: 429–40.
Edmunds LH. Thrombolic and bleeding complications of prosthetic heart valves.Ann Thorac Surg 1987;44:430-45.
Yoganathan AP, Corcoran WH, Harrison EC, Carl JR. The Bjork-Shiley aorticvalve-prosthesis: Flow characteristics, thrombus formation and tissue overgrowth.Circulation 1978; 58:70-6.
Lim WL, Chew YT, Chew TC, Low HT. Pulsatile flow studies of a porcine bioprostheticaortic valve in vitro: PIV measurements and shear-induced blood damage.J Biomech 2001; 34: 1417-27.
Ellis JT, Wick TM, Yoganathan AP. Prosthesis-induced hemolysis: Mechanismsand quantification of shear stress. J Heart Valve Dis 1998; 7: 376-86.
Levine MN, Raskob G, Hirsh J: Hemorrhagic complications of long-term anticoagulationtherapy. Chest 1989; 95: 265–365.
Lee RJ, Bartzokis T, Yeoh T, Grogin HR, Choi D, Schnittger I. Enhanced detectionof intracardiac sources of cerebral emboli by transesophageal echocardiography.Stroke 1991; 22: 734-9.
Orsinelli DA, Pearson AC. Detection of prosthetic valve strands by transesophagealechocardiography. Clinical significance in patients with suspected cardiacsource of embolism. J Am Coll Cardiol 1995; 26: 1713-8.
Isada LR, Torelli JN, Stewart WJ, Klein AL. Detection of fibrous strands on prostheticmitral valves with transesophageal echocardiography: another potential embolicsource. J Am Soc Echocardiogr 1994;7:641-5.
Hutchinson K, Hafeez F, Woods TD, et al. Recurrent ischemic strokes in a patientwith Medtronic-Hall prosthetic aortic valve and valve strands. J Am Soc Echocardiogr1998; 11: 755-7.
Carey RF, Porter JM, Richard G, et al. An interlaboratory comparison of the FDSAprotocol for the evaluation of cavitation potential of mechanical heart valves. JHeart Valve Dis 1995; 4: 532-41.
Hwang NH. Cavitation of mechanical heart valves. J Heart Valv Dis 1995; 4: 531.
Kafesjian R, Howanec M, Ward GD, et al. Cavitation damage of pyrolytic carbonin mechanical heart valves. J Heart Vallve Dis 1994; 3: S2-7.
He Z, Xi B, Zhu K, Hwang NH. Mechanicals of mechanical heart valve cavitation:Investigation using a tilting disk valve model. J Heart Valve Dis 2001; 10: 666-74.
Naito Y, Hachida M, Shimabukuro T, Nonoyama M, Endo M, Koyanagi H. St.Jude Medical prosthetic aortic valve malfunction due to pannus formation. Jpn JThorac Cardiovasc Surg 2000; 48: 739-41.
Hurwitz SE, Waxman D, Hecht S. Acute failure of a St. Jude's prosthetic aorticvalve: large pannus formation masked by a small thrombus. J Am Soc Echocardiogr2009;22:1086.e1-3. doi: 10.1016/j.echo.2009.04.001.
Vitale N, Renzulli A, Agozzino L, et al. Obstruction of mechanical mitral prostheses:analysis of pathologic findings. Ann Thorac Surg 1997; 63: 1101-6.
Sakamoto Y, Hashimoto K, Okuyama H, Ishii S, Shingo T, Kagawa H. Prevalenceof pannus formation after aortic valve replacement: clinical aspects and surgicalmanagement. J Artific Organs 2006; 9: 199-202.
Deviri E, Sareli P, Wisenbaugh T, Cronje SL. Obstruction of mechanical heartvalve prostheses: clinical aspects and surgical management. J Am Coll Cardiol1991;17:646-50.
Dunning J, Gao H, Chambers J, et al. Aortic valve surgery: Marked increases involume and significant decreases in mechanical valve use—an analysis of 41,227patient over 5 years from the Society for Cardiothoracic Surgery in Great Britainand Ireland National database. J Thorac Cardiovasc Surg 2011; 142: 776-82.
Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporatedinto the ACC/AHA 2006 guidelines for the management of patients with valvularheart disease: a report of the American College of Cardiology/American HeartAssociation Task Force on Practice Guidelines (Writing Committee to Revise the1998 Guidelines for the Management of Patients With Valvular Heart Disease):endorsed by the Society of Cardiovascular Anesthesiologists, Society for CardiovascularAngiography and Interventions, and Society of Thoracic Surgeons. Circulation2008; 118(15): e523-661. doi: 10.1161/CIRCULATIONAHA.108.190748.Epub 2008 Sep 26.
Starr A. The artificial heart valve. Nature medicine 2007; 13: 1160-4.
Goffin YA, Bertik MA, Hilbert SL. Porcine aortic vs bovine pericardial valves:a morphologic study of the Xenomedica And Mitroflow bioprotheses. Z Kardiol1986; 75 (Suppl2):213-22.
Carpentier A. From valvular xenografts to valvular bioprothesis (1965-1977).Med Instrum 1977;11:98-101.
Ross DN. Homograft replacement of the aortic valve. Lancet 1962; 2: 487-90.
Angell WW, Iben AB, Shumway NE. Fresh aortic homografts for multiple valvereplacement. Arch Surg 1968; 97: 826-30.
Puig LB, Verginelli G, Kawabe L, Zerbini EJ. Homologous dura mater cardiacvalve. Method of preparing the valve. Rev Hosp Clin Fac Med Sao Paulo.1974;29(2):85-9.
Puig LB, Verginelli G, Iryia K, et al. Homologous dura mater cardiac valves.Study of 533 operated cases. J Thorac Cardiovasc Surg 1975; 69: 722-8.
Petropoulos PC. Fate of dura mater homograft covering defects of right ventricle.Surgery 1962; 52: 883-9.
Ionescu MI, Ross DN. Heart valve replacement with autologous fascia lata. Lancet1969; 2(7616): 335-8.
Inoescou MI, Ross DN, Deac R, et al. Autologous fascia lata for heart valve replacement.Thorax 1970; 25(1): 46-56.
Schwartz H, Senning A. Autogreffe des valves aortiques. Ann Chir Thorac Cardiovasc1966; 5(2): 271-4.
Senning A. Fascia lata replacement for aortic valves. J Thorac Cardiovasc Surg1967; 54(4): 465-70.
Puig LB, Verginelli G, Belloti G, et al. O uso da duramater homóloga en cirurgiacardiaca. Arq Bras Cardiol 1973; 26: 295-302.
Lex A, Raia A. Use of homologous dura mater, preserved in glycerin, in the treatmentof incisional hernia. Rev Paul Med 1971; 77: 123-8.
Pigossi N, Raia A, Lex A, et al. Experimental and clinical study on the use as atransplant of homogenous dura mater preserved in glycerin at room temperature.AMB Rev Assoc Med Bras 1971; 17(8): 263-77.
Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C. Biological factorsaffecting long term results of valvular heterografts. J Thorac Cardiovas Surg1969; 58(4): 467-83.
Carpentier A. The concept of bioprosthesis. Thoraxchir Vask Chir 1971; 19(5):379-83.
Jorge-Herrero E, Fernández P, de la Torre N, et al. Inhibition of the calcificationof porcine valve tissue by selective lipid removal. Biomaterials 1994; 15: 815-20.
Khor E. Methods for the treatment of collagenous tissues for bioprosthesis. Biomaterials1997; 18: 95-105.
Sacks MS, Choung CJC, More R. Collagen fiber architecture of bovine pericardium.ASAIO J 1994; 40: M632-7.
Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprosthesis anddrug delivery matrices. Biomaterials 1966;17:471-84.
Golomb G, Schoen FJ, Smith MS, Linden J, Dixon M, Levy RJ. The role of glutaraldehyde-induced crosslink in calcification of bovine pericardium used in cardiacvalve tissue bioprosthesis. Am J Pathol 1987; 127:122-30.