2006, Número 4
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2006; 14 (4)
Distintas necesidades de ácido fólico en poblaciones específicas
Serralde ZAE, Meléndez MG, Infante SH
Idioma: Español
Referencias bibliográficas: 36
Paginas: 241-246
Archivo PDF: 121.50 Kb.
RESUMEN
La evaluación de las recomendaciones de ingestión de vitaminas ha sido basada en los requerimientos para prevenir sus deficiencias y enfermedades asociadas a ellas. Los folatos han servido como prototipo para demostrar la influencia del genotipo sobre los requerimientos de nutrimentos. Según estudios epidemiológicos la deficiencia de folatos y la elevación de homocisteína incrementa el riesgo de desarrollar defectos del cierre del tubo neural (DCTN) y enfermedades cardiovasculares. Diversas alteraciones en la función de los receptores, transportadores o enzimas debidas a polimorfismos en los genes que los codifican afectan negativamente el metabolismo de los folatos, tal es el caso de C677T que tiene alta prevalencia en nuestro país y modifica la respuesta a la dieta, con incremento en los requerimientos de folatos. En vista de proveer las mejores recomendaciones para todos, es necesario incluir el impacto de la variación genética y considerar los requerimientos de cada individuo según su perfil genómico.
REFERENCIAS (EN ESTE ARTÍCULO)
Mohillo A. Genetic variation and nutritional requirements in Nutrigenetics and Nutrigenomics. Simopoulos A, Ordovas J (eds). World Rev Nutr Diet Basel, Karger, 2004 (93): 153-163.
Boander-Gouaille C. Focus on homocysteine and the vitamins involved in its metabolism. Second edition. Springer-Verlag France. 2002: 15-31.
Mangoni A, Jackson S. Homocysteine and cardiovascular disease: Current evidence and future prospects. Am J Med 2002; 112: 556-565.
Weir D, Scott J. Homocysteine as a risk factor for cardiovascular and related disease: Nutritional implications. Nutr Res Rev 1998; 11: 311-338.
Vollset S, Refsum H, Irgens L. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: The Hordaland Homocysteine Study. Am J Clin Nutr 2000; 71: 962-968.
Eichbolzer M, Lutby J, Moser U, Fowler B. Folate and risk of colorectal, beast and cervix cancer: The epidemiological evidence. Swiss Med Wkly 2001; 131: 539-549.
Seshadri S, Beiser A, Selhub J. Plasma homocysteine as a risk factor for dementia and Alzheimer´s disease. N Engl J Med 2002; 346: 476-483.
Ravaglia G, Forti P, Maioli F. Homocysteine and cognitive function in healthy elderly community dwellers in Italy. Am J Clin Nutr 2003; 77: 668-73.
Wald D, Law M, Morris J. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ 2002; 325: 1202-8.
Klerk M, Verhoef P, Clarke R. MTHFR Studies Collaboration Group. MTHFR 677C ® T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 2002; 288: 2023-31.
Rosenblatt D. Folate and homocysteine metabolism and gene polymorphism in the etiology of Down syndrome. Am J Clin Nutr 1999; 70: 429-30.
James J, Pogribna M, Pogribny I, Melnyk S, Hine R, Gibson J, Yi P, Tapoya D, Swenson D, Wilson V, Gaylor D. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 1999; 70: 495-501.
Duthie S, Narayanan S, Brand G. Impact of folate deficiency on DNA stability. J Nutr 2002; 132: 2444S-9S.
Goyette P, Summer J, Milos R, Duncan A, Rosenblatt D, Matthews R, Rozen R. Human methylenetetrahydrofolate reductase: Isolation of cDNA, mapping and mutation identification. Nature Genet 1994; 7: 195-200.
Goyette P, Frosst P, Rosenblatt D, Frozen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe MTHFR deficiency. Am J Hum Genet 1995; 56: 1053-9.
Goyette P, Christensen B, Rosenblatt D, Rozen R. Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of 5 novel mutations in MTHFR. Am J Hum Genet 1996: 1286-75.
Kang S, Wong P, Susmano A. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Genet 1991; 48: 536-45.
Frosst P, Blom H, Milos R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofalate reductase. Nat Gen 1995; 10: 111-3.
Van Der Put N, Steegers-Theunissen R, Frosst P, Tribels F, Eskes T, van der Heuvel L, Mariman E, den Heyer M, Rozen R, Blom H. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifid. Lancet 1995; 346: 1070-1.
The Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and vitamins in vascular disease. N Engl J Med 2006; 354(15): 1567-77.
Kluijtmans L, Kastelein J, Lindemans J. Thermolabile methylenetetrahydrofolate reductase in coronary artery disease. Circulation 1997; 96: 2573-7.
Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Redlund M, Stoll C, Alembik Y, Dott B, Czeizel A, Zelman-Kohan G, Scarano G, Bianca S, Ettore G, Tenconi R, Bellato S, Scala I, Mutchinik O, López M, De Walle H, Hofstra R, Joutchenko L, Kavteladze L, Bermejo E, Martínez M, Gallagher M, Erickson J, Vollset S, Mastroiacovo P, Andria G, Botto L. Geographical and ethnic variation of the 677C > T allele of 5, 10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7,000 newborns from 16 areas world wide. J Med Genet 2003; 40: 619-25.
Mutchinik O, Lisker R, Babinsky V. Programa Mexicano de Registro y Vigilancia Epidemiológica de Malformaciones Congénitas Externas (RYVEMCE). Rev Salud Pública 1988; 30: 88-100.
International Claeringhouse for Birth defects Monitoring Systems. Congenital Malformations Worldwide (ICBDMS) Amsterdam, 1991: 41-58.
Mutchinik O, López M, Luna L, Waxman J, Babinsky V and the RYVEMCE Collaborative Group. High Prevalence of the thermolabile methylenetetrahydrofolate reductase variant in Mexico: a country with a very high prevalence of neural tube defects. Mol Genet Metab 1999; 68: 461-7.
Tsai M. Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine synthase, with lowered plasma homocysteine levels. Atherosclerosis 2000; 149: 131-7.
Cuskelly G, McNulthy H, Scott J. Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet 1996; 347: 657-9.
Rosenberg I. Virtual folate: virtual success? Am J Clin Nutr 1999; 70: 177-8.
Lewis C, Crane N, Wilson D, Yetley E. Estimated folate intakes: data updated to reflected food fortification, increased bioavailability, and dietary supplement use. Am J Clin Nutr 1999; 70: 198-207.
Jacques P, Selhub J, Bostom A. The effect of folic acid fortification on plasma folate and homocysteine concentrations. N Engl J Med 1999; 340: 1149-54.
Quinlivan E, Gregory J. Effect of food fortification on folic acid intake in the United States. Am J Clin Nutr 2003; 77: 221-5.
Homocysteine Lowering Trialist´Collaboration. Lowering blood homocysteine with folic acid based supplements: meta analysis of randomized trials. BMJ 1998; 316: 894-8.
Shelnutt K, Kauwell G, Chapman C. Folate status response to controlled folate intake is affected by the methylenetetrahydrofolate reductase 677C ® T polymorphism in young women. J Nutr 2003; 133: 4107-11.
Fohr I, Prinz-Langenohl R, Brönstrup A, Bohlmann A, Nau H, Berthold H, Pietrzik K. 5, 10 Methylenetetrahydrofolate reductase genotype determines the plasma homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in healthy young women. Am J Clin Nutr 2002; 75: 275-82.
Silaste M, Rantala M, Sämpi M, Alfthan G, Aro A, Kesäniemi A. Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J Nutr 2001; 131: 2643-7.
Ashfield-Watt P, Pullin C, Whiting J, Clark Z, Moat S, Newcombe R, Burr M, Lewis M, Powers H, McDowell I. Methylenetetrahydrofolate reductase 677C ® T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr 2002; 76: 180-6.