2022, Número 1
<< Anterior Siguiente >>
VacciMonitor 2022; 31 (1)
Gestión de riesgos para cambio de Lotes de Siembra de Trabajo en el Instituto Finlay de Vacunas
González-Villanueva L, Gutiérrez-Quintana Y, Gutiérrez-Anillo JM, Baños-Paiffer N, Bolaños-Queral GM, Hall-Puebla N, Troya-Jiménez Y, Benítez-Zamora JD
Idioma: Español
Referencias bibliográficas: 42
Paginas: 15-24
Archivo PDF: 466.51 Kb.
RESUMEN
Este artículo proporciona un caso de estudio del uso del Análisis Modal de Fallos y Efectos para identificar y evaluar los riesgos de un posible cambio del lote de siembra de trabajo en el Instituto Finlay de Vacunas. Este análisis tuvo lugar en uno de los procesos críticos de las Plantas de Producción de Ingrediente Farmacéutico Activo del Instituto Finlay de Vacunas. No incluyó cambios en la tecnología de obtención del Lote de Siembra de Trabajo, ni cambios en el Lote de Siembra de Referencia. Como resultado, se identificaron ocho riesgos potenciales y de ellos se valoraron 17 causas, las cuales se asocian principalmente a la contaminación del Lote de Siembra de Trabajo o baja viabilidad del Lote de Siembra de Referencia, uso de materias primas y materiales de proveedores no calificados o posteriores al período de vigencia, errores de manipulación, parámetros de operación inadecuados, uso de medios de cultivo, soluciones y materiales contaminados, inadecuado funcionamiento del equipamiento e instalaciones y personal no capacitado.
Los riesgos identificados son aceptables, con una probabilidad baja de ocurrencia y no están vinculados a la seguridad y eficacia del Ingrediente Farmacéutico Activo, ni de las vacunas. Por último, se propuso una estrategia que minimiza los posibles fallos ante un cambio de Lote de Siembra de trabajo para la fabricación de un producto biofarmacéutico.
REFERENCIAS (EN ESTE ARTÍCULO)
Del Puerto CA, García HM, Cedré B, Año G, Morales T, Alfaro A, et al. Sistema de Lotes de Siembra de la cepa vacunal Vibrio cholerae 638. VacciMonitor.2004;13 (1):21-8.
Yáñez B, Martínez Y, González Y, Figueroa R, Pérez J, Hechavarría JA, et al. Buenas prácticas para la fabricación de productos biológicos. En: Pérez-Cristiá RB y Colectivo de Autores. Buenas Prácticas Farmacéuticas. Sistema Regulador en Cuba. Segunda Edición. La Habana: Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED); 2017. p. 229-49. Disponible en: https://www.cecmed.cu/sites/default/files/adjuntos/DocsLicencias/bpfarmaceuticas_0.pdf.
Smietanska K, Rokosz-Chudziak N, Rastawicki W. Characteristics of Clostridium tetani and laboratory diagnosis of tetanus. Med Dows Mikrobiol. 2013; 65(4):285-95.
Stephens DS, Apicella MA. Neisseria meningitidis. En: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 8va edición. Filadelfia: Elsevier; 2015. p. 301-4.
Prado V. Conceptos microbiológicos de Streptococcus pneumoniae. Rev Chil Infectol. 2001;18 Suppl 1: 6-9.
Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos. Cambios al proceso de producción de productos biológicos registrados. Comparación de productos biológicos. La Habana: CECMED; 2003. Disponible en: https://www.cecmed.cu/sites/default/files/adjuntos/Reglamentacion/Anexo%2010%20BPF%20 Biológicos.pdf. (consultado en línea: 10 de febrero de 2021)
Barberá R. Hacia una nueva generación de vacunas multivalentes basadas en vesículas de membrana externa de Neisseria meningitidis serogrupo B. [Tesis doctoral]. La Habana: Universidad de La Habana; 2008.
Milá L, Valdés R, Padilla S, Mendoza O, Gómez L, García C, et al. Quality Risk Management Application Review in Pharmaceutical and Biopharmaceutical Industries. BioProcess J.2010;9(1):26-37.
ISO. ISO 31000:2018 Risk management - Guidelines. Geneva: ISO; 2018. Disponible en: https://www.iso.org/standard/65694.html.
García J, Santana Z, Zumalacárregui L, Quintana M, Milá L, Ramos M, et al. Aplicación del análisis de riesgo a la producción de proteínas recombinantes expresadas en Escherichia coli. VacciMonitor 2012;21(2):35-42. Disponible en: http://scielo.sld.cu/pdf/vac/v21n2/vac07212.pdf.
González JC. Modelo de gestión de riesgos para los establecimientos regulados por el INVIMA. [Tesis de grado]. Bogotá: Universidad Militar Nueva Granada; 2015.
Candelas IJ. Implementación de un sistema de análisis y control de riesgos en la industria farmacéutica. [Tesis de grado]. Toluca: Universidad Autónoma del Estado de México; 2013.
Rey F. Técnicas de resolución de problemas: criterios a seguir en la producción y el mantenimiento. Madrid: Fundación Confemetal; 2003.
Yáñez B, Martínez Y, González Y, Figueroa R, Pérez J, Hechavarría JA, et al. Guía de Administración de Riesgo a la Calidad. En: Pérez-Cristiá RB y Colectivo de Autores. Buenas Prácticas Farmacéuticas. Sistema Regulador en Cuba. Segunda Edición. La Habana: Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED); 2017. p. 267-83. Disponible en: https://www.cecmed.cu/sites/default/files/adjuntos/DocsLicencias/bpfarmaceuticas_0.pdf.
Apezteguía- Rodríguez I, Díaz-Montel B, García-Martínez Y, Trimiño-Lorenzo L, Soler-Sánchez D, Font-Echevarría B, et al. Gestión de riesgos relativo al cambio de campaña productiva durante la etapa de desarrollo tecnológico en una instalación multipropósito. VacciMonitor. 2020; 29(3):118-28. Disponible en: https://vaccimonitor.finlay.edu.cu/index.php/vaccimonitor/article/view/253.
Gutiérrez Y. Evaluación del proceso de Obtención de Vesículas de Membrana Externa de Neisseria meningitidis serogrupo B. [Tesis de maestría]. La Habana: ISPJAE; 2014.
Padrón MA. Evaluación de las condiciones de la fermentación del polisacárido C de Neisseria meningitidis en la nueva instalación del Instituto Finlay. [Tesis de grado]. La Habana: ISPJAE; 2012.
Knight-Jones TJD, Rushton J. The economic impacts of foot and mouth disease-what are they, how big are they and where do they occur? Prev Vet Med. 2013;112(3-4):162-73.
Grubman MJ, Baxt B. Foot-and-mouth disease. Clin Microbiol Rev. 2004; 17 (2): 465-93.
Alexandersen S, Zhang Z, Donaldson AI, Garland AJ. The pathogenesis and diagnosis of foot-and-mouth disease. J Comp Pathol. 2003;129(1):1-36.
Arzt J, Juleff N, Zhang Z, Rodríguez LL. The Pathogenesis of Foot-and-Mouth Disease I: Viral Pathways in Cattle. Transbound Emerg Dis. 2011;58: 291-304.
Knowles NJ, Wadsworth J, Reid SM, Swabey KG, El-Kholy AA, El-Rahmanet AOA, et al. Foot-and-mouth disease virus serotype A in Egypt. Emerg Infect Dis. 2007;13(10):1593-6.
Sobhy NM, Mor SK, Mohammed MEM, Bastawecy IM, Fakhry HM, Youssef CRB, et al. Phylogenetic analysis of Egyptian foot and mouth disease virus endemic strains. J Am Sci. 2014:10:133-8.
Valdazo-González B, Knowles NJ, Hammond J, King DP. Genome sequences of SAT 2 foot-and-mouth disease viruses from Egypt and Palestinian Autonomous Territories (Gaza Strip). J Virol. 2012;86(16):8901-2.
Soltan MA, Dohreig RMA, Abbas H, Ellawa M, Yousif I, Aly AE, et al. Emergence of Foot and mouth disease virus, Lib 12 lineage of topotype VII, serotype SAT2 in Egypt, 2018. Transbound Emerg Dis. 2019; 66:1105-6. doi: https://10.1111/tbed.13152.
Hagag NM, Hamdy ME, Sargious MA, Elnomrosy SM, Ahmed NA, Hamed AA, et al. Molecular and genetic characterization of newly circulating foot and mouth disease virus (FMDV) serotype SAT2 in Egypt during 2018 and early 2019. Hosts and Viruses.2020; 6(5): 103-8.doi: https://10.17582/journal.hv/2019/6.5.103.108.
Abousenna MS, Khafagy HA, Abotaleb MM, Darwish DM, Barghooth WM, Shafik NG. Alternative method for the evaluation of monovalent inactivated foot and mouth disease virus vaccine. VacciMonitor. 2021: 30(1):4-9. Available at: https://vaccimonitor.finlay.edu.cu/index.php/vaccimonitor/article/view/244.
OIE. Organization for Animal Health. Foot and Mouth Disease (infection with foot and mouth disease). In: OIE. World Organization for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds, bees). Paris: OIE; 2021. p. 1-31. Available at: https://www.oie.int/.
Ferreira ME. Microtiter neutralization test for the study of foot-and-mouth disease antibodies. Boletin Centro Pan Americano de Fiebre Aftosa. 1976; 21(22): 17-20.
Dekker A, van Hemert-Kluitenberg F, Oosterbaan AH, Moonen K, Mouton L. Replacement of foot-and-mouth disease virus cattle tongue titration by in vitro titration. ALTEX. 2018;35(4):489-94. doi: https://10.14573/altex.1712222.
Kärber G.Contribution to the collective treatment of pharmacological series experiments. Arch Exp Pathol Pharmacol. 1931; 162: 480-3.
Nermeen SG, Darwish DM, Abousenna MS, Galal M, Ahmed AR, Attya M, et al. Efficacy of a commercial local trivalent Foot and Mouth Disease (FMD) vaccine against recently isolated O-EA3. Inter J Vet Sci.2019;8(1): 35-8. Available from: https://www.ijvets.com/pdf-files/volume-8-no-1-2019/35-38pdf.
Kitching RP, Rendle R, Ferris NP. Rapid correlation between field isolates and vaccine strains of foot-and-mouth disease virus. Vaccine.1988;6(5):403-8.
Maree F, Kasanga C, Scott K, Opperman P, Chitray M, Sangula A, et al. Challenges and prospects for the control of foot-and-mouth disease: an African perspective. Vet Med (Auckl). 2014;5:119-38.
Balinda SN, Sangula AK, Heller R, Muwanika VB, Belsham GJ, Masembe C, et al. Diversity and transboundary mobility of serotype O foot-and-mouth disease virus in East Africa: implications for vaccination policies. Infect Genet Evol. 2010;10(7):1058-65.
Wekesa SN, Muwanika VB, Siegismund HR, Sangula AK, Namatovu A, Dhikusooka MT, et al. Analysis of Recent Serotype O Foot-and-Mouth Disease Viruses from Livestock in Kenya: Evidence of Four Independently Evolving Lineages. Transbound Emerg Dis. 2015;62(3):305-14. https://doi.org/10.1111/tbed.12152.
Kerfua SD, Shirima G, Kusiluka L, Ayebazibwe C, Martin E, Arinaitwe E, et al. Low topotype diversity of recent foot-and-mouth disease virus serotypes O and A from districts located along the Uganda and Tanzania border. J Vet Sci. 2019;20(2):e4. https://doi.org/10.4142/jvs.2019.20.e4
Jo HE, You SH, Choi JH, Ko MK, Shin SH, Song J, et al. Evaluation of novel inactivated vaccines for the SAT 1, SAT 2 and SAT 3 serotypes of foot-and-mouth disease in pigs. Virol J. 2019;16(1):156. doi:https://10.1186/s12985-019-1262-1.
Rweyemamu MM. Antigenic variation in foot-and-mouth disease: studies based on the virus neutralization reaction. J Biol Stand.1984;12(3):323-37.
Willems T, De Vleeschauwer A, Perez-Filgueira M, Li Y, Ludi A, Lefebvre D, et al. FMD vaccine matching: Inter laboratory study for improved understanding of r1 values. J Virol Methods.2020;276:113786. doi: https:/10.1016/j.jviromet.2019.113786.
Blignaut B, van Heerden J, Reininghaus B, Fosgate GT, Heath L. Characterization of SAT2 foot-and-mouth disease 2013/2014 outbreak viruses at the wildlife-livestock interface in South Africa. Transbound Emerg Dis. 2020; 67(4): 1595-1606. doi:https://10.1111/tbed.13493.
Leon EA, Perez AM, Stevenson MA, Robolio B, Mattion NM, Seki C, et al. Effectiveness of systematic foot and mouth disease mass vaccination campaigns in Argentina. Rev Sci Tech. 2014;33(3):917-26.