2024, Número 1
<< Anterior Siguiente >>
Cir Card Mex 2024; 9 (1)
Linfocitos T reguladores en la 'balanza inflamatoria'' como respuesta a la circulación extracorpórea en cirugía cardiaca. Una revisión narrativa
Rodríguez-Morales M, Díaz-Quiroz G, Aceves-Chimal JL, Flores-Calderón O, García-Ortegón MS, Jaime-Uribe A, Morales-Cruz M, Sánchez-Godínez MF, Matus-Yarce JC, Viscarra-León JF, Rodríguez-Delgado JE, Corona-Chávez CE, Polanco-Lozada JRD, Bustos-Alcazar RA, Xochitemol-Herrera H, Mata-Ortega JA, Serrano-González SP, Romero-Pérez DA, Torres-Álvarez MG, Sánchez-Becerril I, Cruz-Hernández S, Morán-Chaidez E
Idioma: Ingles.
Referencias bibliográficas: 136
Paginas: 10-29
Archivo PDF: 631.53 Kb.
RESUMEN
La Circulación Extracorpórea (CEC) ofrece el beneficio de mantener
un campo quirúrgico exangüe que aporta un escenario
quirúrgico apropiado para la realización del procedimiento intracardiaco,
condición indispensable en prácticamente todas las
cirugías de corazón. Desafortunadamente, este procedimiento
desencadena una cascada inflamatoria debido al contacto de
la sangre con las superficies de la CEC. Esta inflamación puede
tener un impacto negativo en la recuperación del paciente.
Los linfocitos T reguladores son un subtipo de linfocitos T que
intervienen en la modulación de la respuesta inflamatoria, especialmente
a través de la activación de un factor de transcripción
denominado FOXP3 que participa como el principal regulador
transcripcional de los linfocitos Tregs. En esta revisión se identificó
que la comprensión de la interacción entre los linfocitos Tregs
y la CEC ofrece la oportunidad de entender la fisiopatología involucrada
en la activación y desarrollo de la inflamación en la
cirugía cardíaca, que a pesar que la CEC ha generado un gran
impacto en el desarrollo de la cirugía a corazón abierto hay un
precio que pagar, asociado al fenómeno inflamatorio que desencadena
y finalmente afectando la evolución posquirúrgica del
paciente sometido a dicho procedimiento y adicionalmente se reconoce
que la capacidad reguladora de inflamación de los linfocitos
TregFoxP3 ofrece la oportunidad de desarrollar estrategias
futuras que propicien su activación, preservación de su función
durante la CEC mediante fármacos inmunomoduladores, como
corticosteroides y agonistas de receptores adrenérgicos, para coadyuvar
en la mejora de resultados de la cirugía cardiaca.
REFERENCIAS (EN ESTE ARTÍCULO)
Holman WL, Timpa J, Kirklin JK. Origins and Evolution of ExtracorporealCirculation: JACC Historical Breakthroughs in Perspective. J Am Coll Cardiol. 2022;79(16):1606-162
doi: 10.1016/j.jacc.2022.02.027.2. Liu Y, Yue L, Song X, Gu C, Shi X, Wang Y. Dysfunction of peripheral regulatoryT cells predicts lung injury after cardiopulmonary bypass. Biosci Trends. 2022 Jan23;15(6):374-381. doi: 10.5582/bst.2021.01157.
Punjabi PP, Taylor KM. The science and practice of cardiopulmonary bypass: Fromcross circulation to ECMO and SIRS. Glob Cardiol Sci Pract. 2013; 2013(3):249-60. doi: 10.5339/gcsp.2013.32.
Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. Indian J Anaesth.2017;61(9):760-767. doi: 10.4103/ija.IJA_379_17.
Authors/Task Force Members; Kunst G, Milojevic M, Boer C, De Somer FMJJ,Gudbjartsson T, van den Goor J, Jones TJ, et al; EACTS/EACTA/EBCP CommitteeReviewers; Alston P, Fitzgerald D, Nikolic A, Onorati F, Rasmussen BS,Svenmarker S. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypassin adult cardiac surgery. Br J Anaesth. 2019;123(6):713-757. doi: 10.1016/j.bja.2019.09.012.
Machin D, Allsager C. Principles of cardiopulmonary bypass. Continuing Educationin Anaesthesia Critical Care & Pain. 2006;6(5):176-81. doi: 10.1093/bjaceaccp/mkl043.
Choudhary SK, Reddy PR. Cannulation strategies in aortic surgery: techniques anddecision making. Indian J Thorac Cardiovasc Surg. 2022;38(S1):132-45. DOI:10.1007/s12055-021-01191-4.
Jacobs S, De Somer F, Vandenplas G, Van Belleghem Y, Taeymans Y, Van NootenG. Active or passive bio-coating: does it matters in extracorporeal circulation?Perfusion. 2011;26(6):496-502. DOI: 10.1177/0267659111415146.
Paparella D, Scrascia G, Rotunno C, Marraudino N, Guida P, De Palo M, et al.A Biocompatible Cardiopulmonary Bypass Strategy to Reduce Hemostatic andInflammatory Alterations: A Randomized Controlled Trial. J Cardiothorac VascAnesth. 2012;26(4):557-62. DOI: 10.1053/j.jvca.2012.04.010.
Passaroni AC, Felicio ML, De Campos NLKL, Silva MADM, Yoshida WB. Hemolysisand Inflammatory Response to Extracorporeal Circulation during On-Pump CABG: Comparison between Roller and Centrifugal Pump Systems. Braz JCardiovasc Surg. 2018;33(1):64-71. DOI: 10.21470/1678-9741-2017-0125.
Keyser A, Hilker MK, Diez C, Philipp A, Foltan M, Schmid C. Prospective RandomizedClinical Study of Arterial Pumps Used for Routine on Pump CoronaryBypass Grafting: Arterial pumps used for on pump coronary bypass grafting. ArtificialOrgans. 2011;35(5):534-42. DOI: 10.1111/j.1525-1594.2010.01120.x.
Saczkowski R, Maklin M, Mesana T, Boodhwani M, Ruel M. Centrifugal Pumpand Roller Pump in Adult Cardiac Surgery: A Meta-Analysis of Randomized ControlledTrials: Centrifugal pump and roller pump in adult cardiac surgery. ArtificialOrgans. 2012;36(8):668-76. DOI: 10.1111/j.1525-1594.2012.01497.x.
Tan A, Newey C, Falter F. Pulsatile Perfusion during Cardiopulmonary Bypass:A Literature Review. J Extra Corpor Technol. 2022;54(1):50-60. doi: 10.1182/ject-50-60.
Dragovich MA, Chester D, Fu BM, Wu C, Xu Y, Goligorsky MS, et al. Mechanotransductionof the endothelial glycocalyx mediates nitric oxide productionthrough activation of TRP channels. Am J Physiol Cell Physiol. 2016;311(6):C846-53. DOI: 10.1152/ajpcell.00288.2015.
Wu Q, Gao W, Zhou J, He G, Ye J, Fang F, et al. Correlation between acute degradationof the endothelial glycocalyx and microcirculation dysfunction during cardiopulmonarybypass in cardiac surgery. Microvascular Research. 2019;124:37-42. DOI: 10.1016/j.mvr.2019.02.004.
Dekker NAM, Veerhoek D, Koning NJ, van Leeuwen ALI, Elbers PWG, van denBrom CE, et al. Postoperative microcirculatory perfusion and endothelial glycocalyxshedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia.2019;74(5):609-18. DOI: 10.1111/anae.14577.
Iwahashi H, Yuri K, Nosé Y. Development of the oxygenator: past, present, andfuture. J Artif Organs. 2004;7(3):111-20. doi: 10.1007/s10047-004-0268-6.
Onorati F, Santini F, Raffin F, Menon T, Graziani MS, Chiominto B, et al. ClinicalEvaluation of New Generation Oxygenators With Integrated Arterial LineFilters for Cardiopulmonary Bypass: Clinical outcome with new integrated filteroxygenators. Artificial Organs. 2012;36(10):875-85. DOI: 10.1111/j.1525-1594.2012.01469.x
Condello I, Santarpino G, Nasso G, Fiore F, Moscarelli M, Mastroroberto P, et al.Air, inflammation and biocompatibility of the extracorporeal circuits. Perfusion.
2021;36(8):781-5. DOI: 10.1177/0267659120968364.20. Melchior R, Sutton S, Harris W, Dalton H. Evolution of membrane oxygenatortechnology for utilization during pediatric cardiopulmonary bypass. PHMT.2016;7:45-56. DOI: 10.2147/PHMT.S35070.
Hendrix RHJ, Debeuckelaere G, Degezelle K, Lenaerts L, Verbelen T, WeerwindPW. Clinical evaluation of the novel Capiox NX19 adult oxygenator–a multicenterstudy. Perfusion. 2023;38(4):734-9. DOI: 10.1177/02676591221078942.
Ulus AT, Güray T, Ürpermez E, Özyalçın S, Taner A, Haberal E, et al. Biocompatibilityof the Oxygenator on Pulsatile Flow by Electron Microscope. Braz JCardiovasc Surg 2023;38(1):62-70. DOI: 10.21470/1678-9741-2021-0519.
Prakash M, Sharma V, Oh T, Lo C, Parkinson G, McCormack D, et al. Evaluationof the effects of three designs of oxygenators with integrated filters on clinicaland haematological outcomes at an Australasian cardiothoracic unit. Perfusion.2022;026765912210907. DOI: https://doi.org/10.1177/026765912210907.
Stammers AH, Miller R, Francis SG, Fuzesi L, Nostro A, Tesdahl E. Goal-DirectedPerfusion Methodology for Determining Oxygenator Performance duringClinical Cardiopulmonary Bypass. J Extra Corpor Technol. 2017;49(2):81-92.doi.org/10.1051/ject/201749081.
Stanzel RD, Henderson M. Clinical evaluation of contemporary oxygenators. Perfusion.2016;31(1):15-25. DOI: 10.1177/0267659115604709.
Nuszkowski MM, Deutsch N, Jonas RA, Zurakowski D, Montague E, Holt DW.Randomized trial of the Terumo Capiox FX05 oxygenator with integral arterialfilter versus Terumo Capiox Baby RX05 and Terumo Capiox AF02 arterialfilter in infants undergoing cardiopulmonary bypass. J Extra Corpor Technol.2011;43(4):207-14. DOI: PMC4557423.
Gürsu Ö, Isbir S, Ak K, Gerin F, Arsan S. Comparison of new technology integratedand nonintegrated arterial filters used in cardiopulmonary bypass surgery: a randomized,prospective, and single blind study. Biomed Res Int. 2013;2013:529087.DOI: 10.1155/2013/529087.
Deptula J, Valleley M, Glogowski K, Detwiler J, Hammel J, Duncan K. Clinicalevaluation of the Terumo Capiox FX05 hollow fiber oxygenator with integratedarterial line filter. J Extra Corpor Technol. 2009;41(4):220-5. DOI: PMID:20092076
Myers GJ, Gardiner K, Ditmore SN, Swyer WJ, Squires C, Johnstone DR, et al.Clinical evaluation of the Sorin Synthesis oxygenator with integrated arterial filter.J Extra Corpor Technol. 2005;37(2):201-6. DOI: PMCID: PMC4682537.
Roberts TR, Garren MRS, Handa H, Batchinsky AI. Toward an artificial endothelium:Development of blood-compatible surfaces for extracorporeal lifesupport. J Trauma Acute Care Surg. 2020;89(2S):S59-68. DOI: 10.1097/TA.0000000000002700.
Hendrix RHJ, Ganushchak YM, Weerwind PW. Contemporary Oxygenator Design:Shear Stress-Related Oxygen and Carbon Dioxide Transfer: Contemporaryoxygenator design. Artificial Organs. 2018;42(6):611-9. DOI: 10.1111/aor.13084.
Grocott BB, Kashani HH, Maakamedi H, Dutta V, Hiebert B, Rakar M, et al.Oxygen Management During Cardiopulmonary Bypass: A Single-Center, 8-YearRetrospective Cohort Study. J Cardiothorac Vasc Anesth. 2021;35(1):100-5. DOI:10.1053/j.jvca.2020.08.029.
Calhoun A, Pannu A, Mueller AL, Elmadhoun O, Valencia JD, Krajewski ML, etal. Intraoperative Oxygen Practices in Cardiac Surgery: A National Survey. J CardiothoracVasc Anesth. 2022;36(8):2917-26. DOI: 10.1053/j.jvca.2022.01.019.
Young RW. Hyperoxia: a review of the risks and benefits in adult cardiac surgery. JExtra Corpor Technol. 2012;44(4):241-9. DOI: PMCID: PMC4557568.
Douin DJ, Pattee J, Scott B, Fernandez-Bustamante A, Prin M, Eckle T, et al.Hyperoxemia During Cardiac Surgery Is Associated With Postoperative PulmonaryComplications. Critical Care Explorations. 2023;5(3):e0878. DOI: 10.1097/cce.0000000000000878.
Lopez MG, Pretorius M, Shotwell MS, Deegan R, Eagle SS, Bennett JM, et al. TheRisk of Oxygen during Cardiac Surgery (ROCS) trial: study protocol for a randomizedclinical trial. Trials. 2017;18(1):295. DOI: 10.1186/s13063-017-2021-5.
Clingan SP, Reagor JA, Ollberding NJ. Optimal Sweep Gas to Blood Flow Ratio(V/Q) for Initiation of Cardiopulmonary Bypass in a Pediatric Patient Population:A Retrospective Analysis. J Extra Corpor Technol. 2020;52(2):112-117. doi:10.1182/ject-2000004.
Kagawa H, Morita K, Uno Y, Ko Y, Matsumura Y, Kinouchi K, et al. InflammatoryResponse to Hyperoxemic and Normoxemic Cardiopulmonary Bypass in AcyanoticPediatric Patients. World J Pediatr Congenit Heart Surg. 2014;5(4):541-5.DOI: 10.1177/2150135114551029.
Karabulut H, Toraman F, Tarcan S, Demirhisa Ö, Alhan C. Adjustment of sweepgas flow during cardiopulmonary bypass. Perfusion. 2002;17(5):353-6. DOI:10.1191/0267659102pf599oa.
Blakey AK, Holt DW. Improving Decreased Heater-Cooler Efficiency as a Result ofHeater-Cooler Infection Control Strategy. J Extra Corpor Technol. 2019;51(2):73-7. DOI: PMCID: PMC6586260.
Stewardson AJ, Stuart RL, Cheng AC, Johnson PD. Mycobacterium chimaera andcardiac surgery. Med J Aust. 2017;206(3):132-135. doi: 10.5694/mja16.00670.
Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, et al.Prolonged Outbreak of Mycobacterium chimaera Infection After Open-ChestHeart Surgery. Clinical Infectious Diseases. 2015;61(1):67-75. DOI: 10.1093/cid/civ198.
Ninh A, Weiner M, Goldberg A. Healthcare-Associated Mycobacterium chimaeraInfection Subsequent to Heater-Cooler Device Exposure During Cardiac Surgery. JCardiothorac Vasc Anesth. 2017;31(5):1831-5. DOI: 10.1053/j.jvca.2017.05.028.
Condello I, Nasso G, Serraino GF, Mastroroberto P, Fiore F, Speziale G, et al.The Evolution of Temperature Management for Cardiac Surgery: A HistoricalPerspective. J Cardiothorac Vasc Anesth. 2022;36(8):3237-43. DOI: 10.1053/j.jvca.2021.12.023.
Bogert NV, Werner I, Kornberger A, Meybohm P, Moritz A, Keller T, et al. Influenceof hypothermia and subsequent rewarming upon leukocyte-endothelialinteractions and expression of Junctional-Adhesion-Molecules A and B. Sci Rep.2016;6(1):21996. DOI: 10.1038/srep21996.
Tang M, Zhao XG, He Y, Gu JY, Mei J. Aggressive re-warming at 38.5 °C followingdeep hypothermia at 21 °C increases neutrophil membrane bound elastaseactivity and pro-inflammatory factor release. Springerplus. 2016;5:495. DOI:10.1186/s40064-016-2084-x.
Johagen D, Svenmarker S. The scientific evidence of arterial line filtrationin cardiopulmonary bypass. Perfusion. 2016;31(6):446-57. DOI:10.1177/0267659115616179.
Jabur G, Willcox T, Zahidani S, Sidhu K, Mitchell S. Reduced embolic load duringclinical cardiopulmonary bypass using a 20 micron arterial filter. Perfusion.2014;29(3):219-25. DOI: 10.1177/0267659113504445.
Reagor JA, Holt DW. Removal of Gross Air Embolization from CardiopulmonaryBypass Circuits with Integrated Arterial Line Filters: A Comparison of CircuitDesigns. J Extra Corpor Technol. 2016;48(1):19-22. DOI: PMCID: PMC4850218.
Jia Z, Tian G, Ren Y, Sun Z, Lu W, Hou X. Pharmacokinetic model of unfractionatedheparin during and after cardiopulmonary bypass in cardiac surgery. J TranslMed. 2015;13(1):45. DOI: 10.1186/s12967-015-0404-5.
Cartwright B, Mundell N. Anticoagulation for cardiopulmonary bypass: part one.BJA Education. 2023;23(3):110-6. DOI: 10.1016/j.bjae.2022.12.003.
Shore-Lesserson L, Baker RA, Ferraris VA, Greilich PE, Fitzgerald D, Roman P, etal. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists,and The American Society of ExtraCorporeal Technology: Clinical PracticeGuidelines—Anticoagulation During Cardiopulmonary Bypass. The Annals ofThoracic Surgery. 2018;105(2):650-62. DOI: 10.1016/j.athoracsur.2017.09.061.
Shore-Lesserson L, Baker RA, Ferraris V, Greilich PE, Fitzgerald D, Roman P, etal. STS/SCA/AmSECT Clinical Practice Guidelines: Anticoagulation during CardiopulmonaryBypass. J Extra Corpor Technol. 2018;50(1):5-18.
Tanaka KA, Henderson RA, Strauss ER. Evolution of viscoelastic coagulation testing.Expert Rev Hematol. 2020;13(7):697-707. doi: 10.1080/17474086.2020.1758929.
Jansa L, Fischer C, Serrick C, Rao V. Protamine Test Dose: Impact on ActivatedClotting Time and Circuit Integrity. Ann Thorac Surg 2022;113(2):506-10. DOI:10.1016/j.athoracsur.2021.04.059.
Lohbusch B, Olson K, Magowan B, Cherichella R, Wolverton J, Dell’Aiera L, etal. Adult Clinical Perfusion Practice Survey: 2020 results. J Extra Corpor Technol.marzo de 2023;55(1):3-22. PMID: 37034099
Groom RC. Is it Time for Goal-Directed Therapy in Perfusion. J Extra CorporTechnol. 2017;49(2):P8-12.
Murphy GS, Hessel EA 2nd, Groom RC. Optimal perfusion during cardiopulmonarybypass: an evidence-based approach. Anesth Analg. 2009;108(5):1394-417.doi: 10.1213/ane.0b013e3181875e2e.
Condello I, Santarpino G, Nasso G, Moscarelli M, Speziale G, Lorusso R. ‘Goal-directedextracorporeal circulation: transferring the knowledge and experiencefrom daily cardiac surgery to extracorporeal membrane oxygenation’. Perfusion.2023;38(3):449-54. DOI: 10.1177/02676591211063826.
Gao P, Liu J, Zhang P, Bai L, Jin Y, Li Y. Goal-directed perfusion for reducingacute kidney injury in cardiac surgery: A systematic review and meta-analysis.Perfusion. 2023;38(3):591-9. DOI: 10.1177/02676591211073783.
Engelman R, Baker RA, Likosky DS, Grigore A, Dickinson TA, Shore-LessersonL, et al. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists,and The American Society of ExtraCorporeal Technology: ClinicalPractice Guidelines for Cardiopulmonary Bypass—Temperature ManagementDuring Cardiopulmonary Bypass. Ann Thorac Surg 2015;100(2):748-57. doi:10.1016/j.athoracsur.2015.03.126.
Tibi P, McClure RS, Huang J, Baker RA, Fitzgerald D, Mazer CD, et al. STS/SCA/AmSECT/SABM Update to the Clinical Practice Guidelines on Patient BloodManagement. Ann Thirac Surg 2021;112(3):981-1004. DOI: 10.1016/j.athoracsur.2021.03.033.
Hessel EA, Groom RC. Guidelines for Conduct of Cardiopulmonary Bypass. JCardiothorac Vasc Anesth. 2021;35(1):1-17. DOI: 10.1053/j.jvca.2020.04.058.
Kunst G, Milojevic M, Boer C, De Somer FMJJ, Gudbjartsson T, Van Den GoorJ, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass inadult cardiac surgery. British Journal of Anaesthesia. 2019;123(6):713-57. DOI:10.1016/j.bja.2019.09.012.
Anastasiadis K, Murkin J, Antonitsis P, Bauer A, Ranucci M, Gygax E, et al. Useof minimal invasive extracorporeal circulation in cardiac surgery: principles, definitionsand potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS). Interact CardioVascThorac Surg. 2016;22(5):647-62. DOI: 10.1093/icvts/ivv380.
Vohra HA, Whistance R, Modi A, Ohri SK. The Inflammatory Response to MiniaturisedExtracorporeal Circulation: A Review of the Literature. Mediators ofInflammation. 2009;2009:1-7. DOI: 10.1155/2009/707042.
Yuruk K, Bezemer R, Euser M, Milstein DMJ, De Geus HHR, Scholten EW, et al.The effects of conventional extracorporeal circulation versus miniaturized extracorporealcirculation on microcirculation during cardiopulmonary bypass-assistedcoronary artery bypass graft surgery. Interactive CardioVascular and Thoracic Surgery.2012;15(3):364-70. DOI: 10.1093/icvts/ivs271.
Cheng T, Barve R, Cheng YWM, Ravendren A, Ahmed A, Toh S, et al. Conventionalversus miniaturized cardiopulmonary bypass: A systematic review and meta-analysis. JTCVS Open. 2021;8:418-41. DOI: 10.1016/j.xjon.2021.09.037.
Alevizou A, Dunning J, Park JD. Can a mini-bypass circuit improve perfusionin cardiac surgery compared to conventional cardiopulmonary bypass? InteractiveCardioVascular and Thoracic Surgery. 2009;8(4):457-66. DOI: 10.1510/icvts.2008.200857.
Anastasiadis K, Antonitsis P, Deliopoulos A, Argiriadou H. From less invasive tominimal invasive extracorporeal circulation. J Thorac Dis. 2021;13(3):1909-21.DOI: 10.21037/jtd-20-1830.
Ranucci M, Baryshnikova E. Inflammation and coagulation following minimallyinvasive extracorporeal circulation technologies. J Thorac Dis.2019;11(S10):S1480-8. DOI: 10.21037/jtd.2019.01.27.
Zajonz T, Koch C, Schwiddessen J, Markmann M, Hecker M, Edinger F, et al. MinimizedExtracorporeal Circulation Is Associated with Reduced Plasma Levels ofFree-Circulating Mitochondrial DNA Compared to Conventional CardiopulmonaryBypass: A Secondary Analysis of an Exploratory, Prospective, InterventionalStudy. JCM. 2022;11(11):2994. DOI: 10.3390/jcm11112994.
Hessel EA. What’s New in Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth.2019;33(8):2296-326. DOI: 10.1053/j.jvca.2019.01.039.
Monaco F, Di Prima AL, Kim JH, Plamondon MJ, Yavorovskiy A, Likhvantsev V,et al. Management of Challenging Cardiopulmonary Bypass Separation. J CardiothoracVasc Anesth. 2020;34(6):1622-35. DOI: 10.1053/j.jvca.2020.02.038.
Barry AE, Chaney MA, London MJ. Anesthetic management during cardiopulmonarybypass: a systematic review. Anesth Analg. 2015;120(4):749-69. doi:10.1213/ANE.0000000000000612.
Uhlig C, Labus J. Volatile Versus Intravenous Anesthetics in Cardiac Anesthesia:a Narrative Review. Curr Anesthesiol Rep. 2021;11(3):275-83. DOI: 10.1007/s40140-021-00466-1
Yamamoto H, Yamamoto F. Myocardial protection in cardiac surgery: a historicalreview from the beginning to the current topics. Gen Thorac Cardiovasc Surg.2013;61(9):485-96. DOI: 10.1007/s11748-013-0279-4.
Yamamoto F. Do we need hypothermia in myocardial protection? Ann Thorac CardiovascSurg. 2000;6(4):216-23. DOI: 10.1093/cvr/17.12.719.
Tveita T, Sieck GC. Physiological Impact of Hypothermia: The Good, the Bad,and the Ugly. Physiology (Bethesda). 2022;37(2):69-87. DOI: 10.1152/physiol.00025.2021.
Abbasciano RG, Koulouroudias M, Chad T, Mohamed W, Leeman I, Pellowe C,et al. Role of Hypothermia in Adult Cardiac Surgery Patients: A Systematic Reviewand Meta-analysis. J Cardiothorac Vasc Anesth. 2022;36(7):1883-90. DOI:10.1053/j.jvca.2022.01.026.
Saad H, Aladawy M. Temperature management in cardiac surgery. Glob CardiolSci Pract. 2013;2013(1):44-62. DOI: 10.5339/gcsp.2013.7.
Bianco V, Kilic A, Aranda-Michel E, Dunn-Lewis C, Serna-Gallegos D, Chen S, etal. Mild hypothermia versus normothermia in patients undergoing cardiac surgery.JTCVS Open. 2021;7:230-42. DOI: 10.1016/j.xjon.2021.05.020.
Buckberg GD, Athanasuleas CL. Cardioplegia: solutions or strategies? Eur J CardiothoracSurg. 2016;50(5):787-91. DOI: 10.1093/ejcts/ezw228.
Allen BS. Myocardial protection: a forgotten modality. Eur J Cardiothorac Surg2019;ezz215. DOI: 10.1093/ejcts/ezz215.
Zhou K, Zhang X, Li D, Song G. Myocardial Protection With Different Cardioplegiain Adult Cardiac Surgery: A Network Meta-Analysis. Heart Lung Circ.2022;31(3):420-9. DOI: 10.1016/j.hlc.2021.09.004.
Suleiman MS, Zacharowski K, Angelini GD. Inflammatory response and cardioprotectionduring open-heart surgery: the importance of anaesthetics: Inflammation,cardioprotection and anaesthetics. Br J Pharmacol. 2008;153(1):21-33.DOI: 10.1038/sj.bjp.0707526.
Bronicki RA, Hall M. Cardiopulmonary Bypass-Induced Inflammatory Response:Pathophysiology and Treatment. Pediatr Crit Care Med. 2016;17:S272-8. DOI:10.1097/PCC.0000000000000759.
Day JRS, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonarybypass. International Journal of Surgery. 2005;3(2):129-40. DOI:10.1016/j.ijsu.2005.04.002.
Evora PRB, Bottura C, Arcêncio L, Albuquerque AAS, Évora PM, Rodrigues AJ.Key Points for Curbing Cardiopulmonary Bypass Inflammation. Acta Cir Bras.2016;31(suppl 1):45-52. DOI: 10.1590/S0102-86502016001300010.
Warren OJ, Smith AJ, Alexiou C, Rogers PLB, Jawad N, Vincent C, et al. TheInflammatory Response to Cardiopulmonary Bypass: Part 1—Mechanisms ofPathogenesis. J Cardiothorac Vasc Anesth. 2009;23(2):223-31. DOI: 10.1053/j.jvca.2008.08.007.
Warren OJ, Watret AL, De Wit KL, Alexiou C, Vincent C, Darzi AW, et al. TheInflammatory Response to Cardiopulmonary Bypass: Part 2—Anti-InflammatoryTherapeutic Strategies. J Cardiothorac Vasc Anesth. 2009;23(3):384-93. DOI:10.1053/j.jvca.2008.09.007.
Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med.1996;24(7):1125-8. DOI: 10.1097/00003246-199607000-00010
Ward NS, Casserly B, Ayala A. The Compensatory Anti-inflammatory ResponseSyndrome (CARS) in Critically Ill Patients. Clinics in Chest Medicine.2008;29(4):617-25. DOI: 10.1016/j.ccm.2008.06.010.
Dasturian F, Naderi N, Farshidfar G, Montazerghaem H, Khayatian M, ChegeniSA, et al. The Relationship Between Serum Concentration of Interleukin-35 andFoxP3 Polymorphism in Patients Undergoing Coronary Artery Bypass Graft Surgery.Braz J Cardiovasc Surg [Internet]. 2020 [citado 16 de junio de 2023];35(5).DOI: 10.21470/1678-9741-2019-0377.
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by thetranscription factor Foxp3. Science. 2003;299(5609):1057-61. DOI: 10.1126/science.1079490.
Bain CR, Myles PS, Corcoran T, Dieleman JM. Postoperative systemic inflammatorydysregulation and corticosteroids: a narrative review. Anaesthesia.2023;78(3):356-70. DOI: 10.1111/anae.15896.
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell.2010;140(6):805-20. DOI: 10.1016/j.cell.2010.01.022
O’Dwyer MJ, Owen HC, Torrance HDT. The perioperative immune response:Curr Opin Crit Care 2015;21(4):336-42. DOI: 10.1097/MCC.0000000000000213.
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. NatImmunol. 2018;19(4):327-41. DOI: 10.1038/s41590-018-0064-8.
Decker D, Schondorf M, Bidlingmaier F, Hirner A, von Ruecker AA. Surgicalstress induces a shift in the type-1/type-2 T-helper cell balance, suggestingdown-regulation of cell-mediated and up-regulation of antibody-mediated immunitycommensurate to the trauma. Surgery. 1996;119(3):316-25. DOI: 10.1016/s0039-6060(96)80118-8.
Mingomataj EÇ, Bakiri AH. Regulator Versus Effector Paradigm: Interleukin-10 as Indicator of the Switching Response. Clin Rev Allergy Immunol.2016;50(1):97-113. DOI: 10.1007/s12016-015-8514-7.
Kats S, Schönberger JPAM, Brands R, Seinen W, Van Oeveren W. Endotoxin releasein cardiac surgery with cardiopulmonary bypass: pathophysiology and possibletherapeutic strategies. An update. Eur J Cardiothorac Surg. 2011;39(4):451-8.DOI: 10.1016/j.ejcts.2010.06.011
Adamik B, Kübler A, Gozdzik A, Gozdzik W. Prolonged Cardiopulmonary Bypassis a Risk Factor for Intestinal Ischaemic Damage and Endotoxaemia. HeartLung Circ. 2017;26(7):717-23. DOI: https://doi.org/10.1016/j.hlc.2016.10.012.
Campos Gómez A, Tomasa Irriguible TM, Cámara Rosell ML, Jordana Lluch E,Roca Antonio J, Just Martinez S, et al. Endotoxemia analysis in the postoperativeperiod following cardiac surgery. Intensive Care Med Exp. 2015;3(Suppl 1):A106.doi: 10.1186/2197-425X-3-S1-A106.
Liu WC, Zhan YP, Wang XH, Hou BC, Huang J, Chen SB. Comprehensive preoperativeregime of selective gut decontamination in combination with probiotics, andsmectite for reducing endotoxemia and cytokine activation during cardiopulmonarybypass: A pilot randomized, controlled trial. Medicine. 2018;97(46):e12685.DOI: 10.1097/MD.0000000000012685.
Giacinto O, Satriano U, Nenna A, Spadaccio C, Lusini M, Mastroianni C, et al.Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets. Recent Pat InflammAllergy Drug Discov. 2019;13(2):158-173. doi: 10.2174/1872213X13666190724112644.
Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A, GentinaT, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med.2006;34(2):532-7. DOI: 10.1097/01.ccm.0000198525.82124.74.
Phan SH, Gannon DE, Ward PA, Karmiol S. Mechanism of neutrophil-inducedxanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: evidenceof a role for elastase. Am J Respir Cell Mol Biol. 1992;6(3):270-8. DOI:10.1165/ajrcmb/6.3.270.
Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res.2013;319(9):1271-80. DOI: 10.1016/j.yexcr.2013.03.011.
Myers GJ, Wegner J. Endothelial Glycocalyx and Cardiopulmonary Bypass.J Extra Corpor Technol. 2017;49(3):174-81. DOI: https://doi.org/10.1051/ject/201749174.
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, et al.Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A NarrativeReview and Clinical Implications. J Cardiovasc Dev Dis. 2023;10(5):213. doi:10.3390/jcdd10050213.
Robich M, Ryzhov S, Kacer D, Palmeri M, Peterson SM, Quinn RD, et al. ProlongedCardiopulmonary Bypass is Associated With Endothelial Glycocalyx Degradation.J Surg Res. 2020;251:287-295. doi: 10.1016/j.jss.2020.02.011.
Grover P, Goel PN, Greene MI. Regulatory T Cells: Regulation of Identity andFunction. Front Immunol. 2021;12:750542. DOI: 10.3389/fimmu.2021.750542.
Lucca LE, Dominguez-Villar M. Modulation of regulatory T cell function andstability by co-inhibitory receptors. Nat Rev Immunol. 2020;20(11):680-93. DOI:10.1038/s41577-020-0296-3.
Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. NatImmunol. 2001;2(9):816-22. DOI: https://doi.org/10.1038/ni0901-816.
Sakaguchi S, Wing K, Miyara M. Regulatory T cells – a brief history and perspective.Eur J Immunol. 2007;37(S1):S116-23. DOI: 10.1002/eji.200737593.
Green DR, Flood PM, Gershon RK. Immunoregulatory T-Cell Pathways. AnnuRev Immunol. 1983;1(1):439-61. DOI: 10.1146/annurev.iy.01.040183.002255.
Piccirillo CA. Regulatory T cells: exploring mechanisms for future therapies. Clinicaland Experimental Immunology. 2019;197(1):11-3. DOI: 10.1111/cei.13338.
Daniele N, Scerpa MC, Landi F, Caniglia M, Miele MJ, Locatelli F, et al.Treg cells: Collection, processing, storage and clinical use. Pathol Res Pract.2011;207(4):209-15. DOI: 10.1016/j.prp.2011.02.003.
Deng G, Song X, Greene MI. FoxP3 in Treg cell biology: a molecular and structuralperspective. Clin Exp Immunol. 2020;199(3):255-262. doi: 10.1111/cei.13357.
Bending D, Ono M. From stability to dynamics: understanding molecular mechanismsof regulatory T cells through Foxp3 transcriptional dynamics. Clin ExpImmunol. 2019;197(1):14-23. doi: 10.1111/cei.13194.
Mohr A, Atif M, Balderas R, Gorochov G, Miyara M. The role of FOXP3+ regulatoryT cells in human autoimmune and inflammatory diseases. Clin Exp Immunol.2019;197(1):24-35. doi: 10.1111/cei.13288.
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al.Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatallymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68-73.doi: 10.1038/83784.
Huynh A, Zhang R, Turka LA. Signals and pathways controlling regulatory T cells.Immunol Rev. 2014;258(1):117-31. DOI: 10.1111/imr.12148.
Hussein H, Denanglaire S, Van Gool F, Azouz A, Ajouaou Y, El-Khatib H, etal. Multiple Environmental Signaling Pathways Control the Differentiation ofRORγt-Expressing Regulatory T Cells. Front Immunol. 2020;10:3007. DOI:10.3389/fimmu.2019.03007.
Chapman NM, Zeng H, Nguyen TLM, Wang Y, Vogel P, Dhungana Y, et al. mTORcoordinates transcriptional programs and mitochondrial metabolism of activatedTreg subsets to protect tissue homeostasis. Nat Commun. 29 de mayo de2018;9(1):2095. DOI: 10.1038/s41467-018-04392-5
Sun IH, Oh MH, Zhao L, Patel CH, Arwood ML, Xu W, et al. mTOR Complex 1Signaling Regulates the Generation and Function of Central and Effector Foxp3+Regulatory T Cells. J Immunol. 2018;201(2):481-92. DOI: 10.4049/jimmunol.1701477.
Kempkes RWM, Joosten I, Koenen HJPM, He X. Metabolic Pathways Involvedin Regulatory T Cell Functionality. Front Immunol. 2019;10:2839. DOI: 10.3389/fimmu.2019.02839.
Yang G, Xia Y, Ren W. Glutamine metabolism in Th17/Treg cell fate: applicationsin Th17 cell-associated diseases. Sci China Life Sci. 2021;64(2):221-33. DOI:10.1007/s11427-020-1703-2.
Liu C, Chapman NM, Karmaus PWF, Zeng H, Chi H. mTOR and metabolic regulationof conventional and regulatory T cells. J Leukoc Biol. 2015;97(5):837-47.DOI: 10.1189/jlb.2RI0814-408R.
Chen W. Dendritic cells and (CD4+)CD25+ T regulatory cells: crosstalk betweentwo professionals in immunity versus tolerance. Front Biosci. 2006;11:1360-70.DOI: 10.2741/1889.
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. MicrobiomeDependent Regulation of Tregs and Th17 Cells in Mucosa. Front Immunol.2019;10:426. DOI: 10.3389/fimmu.2019.00426.
Calvo-Barreiro L, Zhang L, Abdel-Rahman SA, Naik SP, Gabr M. Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory TCells. Int J Mol Sci. 2023;24(2):1806. doi: 10.3390/ijms24021806.
Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives.Nat Rev Immunol. 2020;20(3):158-72. DOI: 10.1038/s41577-019-0232-6.
Duggleby R, Danby RD, Madrigal JA, Saudemont A. Clinical Grade RegulatoryCD4+ T Cells (Tregs): Moving Toward Cellular-Based Immunomodulatory Therapies.Front Immunol. 2018;9:252. DOI: 10.3389/fimmu.2018.00252.
Chae WJ, Bothwell ALM. Therapeutic Potential of Gene-Modified Regulatory TCells: From Bench to Bedside. Front Immunol. 2018;9:303. DOI: 10.3389/fimmu.2018.00303.