2022, Número 1
Deep Learning aplicado en imágenes fotoacústicas para la Identificación del cáncer de seno
Idioma: Español
Referencias bibliográficas: 44
Paginas:
Archivo PDF: 510.85 Kb.
RESUMEN
La Imagen Fotoacústica (PAI por sus siglas en inglés), es una modalidad de imagen híbrida que fusiona la iluminación óptica y la detección por ultrasonido. Debido a que los métodos de imágenes ópticas puras no pueden mantener una alta resolución, la capacidad de lograr imágenes de contraste óptico de alta resolución en tejidos biológicos hace que la fotoacústica (PA por sus siglas en inglés) sea una técnica prometedora para varias aplicaciones de imágenes clínicas. En la actualidad el Aprendizaje Profundo (Deep Learning) tiene el enfoque más reciente en métodos basados en la PAI, donde existe una gran cantidad de aplicaciones en análisis de imágenes, en especial en el área del campo biomédico, como lo es la adquisición, segmentación y reconstrucciones de imágenes de tomografía computarizada. Esta revisión describe las últimas investigaciones en PAI y un análisis sobre las técnicas y métodos basados en Deep Learning, aplicado en diferentes modalidades para el diagnóstico de cáncer de seno.REFERENCIAS (EN ESTE ARTÍCULO)
Fitzmaurice C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 2006 to 2016: A systematic analysis for the Global Burden of Disease study. Journal of Clinical Oncology [Internet]. 2018 [cited 2021 Dec 6];36(15_suppl):1568. Available from: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.1568
American Cancer Society [Internet]. Atlanta, Georgia, EU: Sociedad Americana Contra El Cáncer; c2019 [cited 2021 Dec 6]. Recomendaciones de la Sociedad Americana Contra El Cáncer para la detección temprana del cáncer de seno. Available from: https://www.cancer.org/es/cancer/cancer-de-seno/pruebas-de-deteccion-y-deteccion-temprana-del-cancer-de-eno/guias-de-la-sociedad-americana-contra-el-cancer-para-la-deteccion-temprana-del-cancer-de-seno.html
Czuchnowski J, Prevedel R. Photoacoustics: seeing with sound. An advanced technology that combines high-frequency sound waves with laser light is giving researchers and clinicians a new way of seeing living tissue. Science in School [Internet]. 2019 Summer [cited 2021 Dec 6]. Available from: https://www.prevedel.embl.de/files/issue47_photoacoustics.pdf
Breathnach AE. Photoacoustic imaging with clinical, preclinical, and quantitative applications [Doctoral theses in Internet]. Galway, Ireland: National University of Ireland; 2020 Mar [cited 2021 Dec 7]. 171 p. Available from: https://aran.library.nuigalway.ie/bitstream/handle/10379/16611/Aed%c3%a1n%20Breathnach%20PhD%20Thesis.pdf?sequence=5&isAllowed=y
Hauptmann A, Cox B. Deep learning in photoacoustic tomography: current approaches and future directions. Journal of Biomedical Optics [Internet]. 2020 [cited 2021 Dec 6];25(11). Available from: https://www.researchgate.net/publication/344276721_Deep_Learning_in_Photoacoustic_Tomography_Current_approaches_and_future_directions
Muramatsu S, Sato K. Quantitative Analysis of Emphysema in Ultra-high-resolution CT by Using Deep Learning Reconstruction: Comparison with Hybrid Iterative Reconstruction. Japanese Journal of Radiological Technology [Internet]. 2020 [cited 2021 Dec 8];76(11):1163-72. Available from: https://www.jstage.jst.go.jp/article/jjrt/76/11/76_2020_JSRT_76.11.1163/_pdf/-char/ja
Valdez Rodríguez J, Calvo H, Felipe Riverón E. Reconstrucción de profundidad a partir de una sola imagen con perspectiva mediante redes neuronales completamente convolucionales. Research in Computing Science [Internet]. 2017 [cited 2021 Dec 9];137(1):29-38. Available from: https://www.rcs.cic.ipn.mx/2017_137/Reconstruccion%20de%20profundidad%20a%20partir%20de%20una%20sola%20imagen%20con%20perspectiva%20mediante%20redes.pdf
Padial J. Técnicas de programación "deep learning": ¿simulacro o realización artificial de la inteligencia? Naturaleza y Libertad (Revista de estudios interdisciplinares) [Internet]. 2019 [citado 9 Dic 2021];(12):191-210. Disponible en: https://revistas.uma.es/index.php/naturaleza-y-libertad/article/view/6274/5798
Robles Fajardo JB, Millán Gómez JA. Modelo en Machine Learning para el Diagnóstico del Cáncer de Mama [proyecto de investigación para el grado de especialista en Internet]. Colombia: Universidad Distrital Francisco José de Caldas; 2020 [citado 14 Dic 2021]. 168 p. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/25070/RoblesFajardoJaimeBrandon2020.pdf?sequence=1&isAllowed=y
Durán López L, Domínguez Morales JP, Luna Perejón F, Rodríguez IA, Civit Masot J, Díaz SV, et al. Clasificación de tumores en cáncer de mama basado en redes neuronales de convolución. En: Beltán Custodio AM, Ángel MF (ed.). Avances en la investigación en ciencia e ingeniería [Internet]. 3ciencias. España: Editorial Área de Innovación y Desarrollo, S.L.; 2019 [citado 16 Dic]. p. 87–94. Disponible en: https://dialnet.unirioja.es/descarga/libro/741305.pdf
Khamparia A, Bharati S, Podder P, Gupta D, Khanna A, Phung T et al. Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimensional Systems and Signal Processing [Internet]. 2021 [cited 2021 Dec 16];32(2):747-65. Available from: https://link.springer.com/content/pdf/10.1007/s11045-020-00756-7.pdf
Ávila Hernández R, Rossell Mendoza KR, Soto Mora JA. Choosing a machine learning model for breast cancer detection in images. Revista latinoamericana de Investigación Social [Internet]. 2020 [citado 17 Dic 2021];3(3):19-35. Available from: https://repositorio.lasalle.mx/bitstream/handle/lasalle/2065/Choosing%20a%20machine%20learning%20model%20for%20breast%20cancer%20detection%20in%20images.pdf?sequence=1&isAllowed=y
Navarro Jurado S. Uso de algoritmos de aprendizaje automático aplicados a base de datos genéticas. España: Universitat Oberta Catalunya; 2017 [citado 18 Dec 2021]. 77 p. Disponible en: https://www.researchgate.net/publication/318393732_Uso_de_algoritmos_de_aprendizaje_automatico_aplicados_a_bases_de_datos_geneticos
Athreya A, Kalari K, Cairns J, Gaglio A, Wills Q, Niu N et al. Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer. Oncotarget [Internet]. 2017 [cited 2021 Dec 18];8(16):27199-215. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432329/
Gal J, Bailleux C, Chardin D, Pourcher T, Gilhodes J, Jing L, et al. Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer. Computational and Structural Biotechnology Journal [Internet]. 2020 [cited 2021 Jul 29];18:1509-24. Available from: https://doi.org/10.1016/j.csbj.2020.05.021
Etmann C, Ke R, Schönlieb CB. iUNets: learnable invertible up- and downsampling for large-scale inverse problems [Internet]. 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP); 2020 Sep 21-24; Espoo, Finland. USA: IEEE; 2020 [cited 2021 Dec 19]. Available from: https://ieeexplore.ieee.org/document/9231874