2022, Número 1
<< Anterior Siguiente >>
Revista Cubana de Informática Médica 2022; 14 (1)
Internet de las cosas en el ámbito de la atención médica: tendencias y desafíos
Arango AP, Garcia GY
Idioma: Español
Referencias bibliográficas: 77
Paginas:
Archivo PDF: 604.52 Kb.
RESUMEN
La internet de las cosas ha mantenido un crecimiento continuo en los últimos años. Las potencialidades de uso que muestra en diferentes campos han sido ampliamente documentadas. Su utilización efectiva en el campo de la salud puede traer consigo mejoras en la eficiencia de los tratamientos médicos, prevenir situaciones de riesgo, ayudar a elevar la calidad del servicio y proporcionar soporte a la toma de decisiones. La presente revisión profundiza en aspectos medulares de su utilización con el objetivo de explorar las principales tendencias y desafíos relacionados con la creciente utilización de la internet de las cosas en la salud, prestando mayor atención a los aspectos relacionados con las arquitecturas utilizadas para el despliegue de sistemas de internet de las cosas en ese ámbito, el manejo de la seguridad de estos sistemas y las herramientas para el apoyo a la toma de decisiones empleadas. Mediante el análisis documental se logra mostrar las principales características de estos sistemas, así como su arquitectura, herramientas utilizadas para la gestión de los datos capturados y mecanismos de seguridad. La utilización de la internet de las cosas en el campo de la salud tiene gran impacto, mejorando la vida de millones de personas en todo el mundo y brindando grandes oportunidades para el desarrollo de sistemas inteligentes de salud.
REFERENCIAS (EN ESTE ARTÍCULO)
Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of Things for Smart Cities. IEEE Internet of Things Journal. 2014;1(1):22-32
Elijah O, Rahman TA, Orikumhi I, Leow CY, Hindia N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture - Benefits and Challenges. IEEE Internet of Things Journal [Internet]. 2018 [cited 2021 Dec 21];5(5). Available from: https://ieeexplore.ieee.org/document/8372905
Yin Y, Zeng Y, Chen X, Fan Y. The internet of things in healthcare: An overview. Journal of Industrial Information Integration. 2016;1:3-13
Auffray C, Balling R, Barroso I, Bencze L, Benson M, Bergeron J, et al. Making sense of big data in health research: Towards an EU action plan. Genome Medicine. 2016;8(1):[about 13 p.]
Kalaiselvi G. A Comprehensive Study On Healthcare Applications using IoT2018. International Journal of Engineering Science Invention (IJESI) [Internet]. 2018 [cited 2022 Jan 11]:41-5. Available from: http://www.ijesi.org/papers/NCIOT-2018/Volume-1/8.%2041-45.pdf
Balaji S, Nathani K, Santhakumar R. IoT Technology, Applications and Challenges: A Contemporary Survey. Wireless Personal Communications [Internet]. 2019 [cited 2021 Dec 21]. Available from: https://doi.org/10.1007/s11277-019-06407-w
Mahmood T, Wittenberg P, Zwetsloot IM, Wang H, Tsui KL. Monitoring data quality for telehealth systems in the presence of missing data. Int J Med Inform. 2018 Jun;126.
Dimitrov DV. Medical Internet of Things and Big Data in Healthcare. Healthcare Informatics Research. 2016;22(3):156-63
Farahani B, Firouzi F, Chang V, Badaroglu M, Constant N, Mankodiya K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems [Internet]. 2017 [cited 2021 Dec 21];78:659-76. Available from: https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1069&context=ele_facpubs
Gia TN, Jiang M, Sarker VK, Rahmani AM, Westerlund T, Pasi Liljeberg1 aHT. Low-cost Fog-assisted Health-care IoT System with Energy efficient Sensor Nodes. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain. USA: IEEE; 2017
Priya B H, Nandhini S. IoT based Survey on Healthcare and Agriculture. International Journal of Innovative Research in Computer and Communication Engineering. 2017
Yu L, Chan WM, Zhao Y, Tsui K-L. Personalized Health Monitoring System of Elderly Wellness at the Community Level in Hong Kong. IEEE Access [Internet]. 2018 Jun [cited 2022 Jan 11];6:[about 10 p.]. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8389199
Santos MAG, Munoz R, Olivares R, Rebouças Filho PP, del Ser J, de Albuquerque VHC. Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook. Elsevier BV . 2019.
Baig MM, GholamHosseini H, Moqeem AA, Mirza F, Lindén M. A systematic review of wearable patient monitoring systems-current challenges and opportunities for clinical adoption. Journal of medical systems. 2017;41(7)
Din IU, Almogren A, Guizani M, Zuair M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access. 2019;7:89967-79
Sadoughi F, Behmanesh A, Sayfouri N. Internet of things in medicine: A systematic mapping study. Journal of Biomedical Informatics. 2020 Mar:[about 20 p.]
Shriti Mishra S, Rasool A. IoT Health care Monitoring and Tracking : A Survey. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. US: IEEE. 2019
LeMoyne R, Mastroianni T, Grundfest W. Wireless accelerometer configuration for monitoring Parkinson's disease hand tremor. Advances in Parkinson's Disease [Internet]. 2013 [cited 2022 Jan 11];2(2):62-7. Available from: https://www.researchgate.net/publication/276492946_Wireless_accelerometer_configuration_for_monitoring_Parkinson%27s_disease_hand_tremor
Chiuchisan I, Geman O. An Approach of a Decision Support and Home Monitoring System for Patients with Neurological Disorders using Internet of Things Concepts. WSEAS Transactions on Systems [Internet]. 2014 [cited 2022 Jan 11];13:460-9. Available from: http://www.wseas.us/journal/pdf/systems/2014/g045702-416.pdf
Mohana SR, Aradhya HR, editors. Remote monitoring of heart rate and music to tune the heart rate. 2015 Global Conference on Communication Technologies (GCCT), Thuckalay, Kanya Kumari District, India; 23-24 April 2015. US: IEEE; 2015
Kodali RK, Swamy G, Lakshmi B. An Implementation of IoT for Healthcare. Recent Advances in Intelligent Computational Systems [Internet]. 2015 [cited 2022 Jan 11]. Available from: https://ieeexplore.ieee.org/abstract/document/7488451
Ali S, Ghazal M, editors. Real-time heart attack mobile detection service (RHAMDS): An IoT use case for software defined networks. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE); 30 April-3 May 2017; Windsor, ON, Canada. USA: IEEE; 2017
da Silva DV, Gonçalves TG, Pires PF. Using IoT technologies to develop a low-cost smart medicine box. 2019: Anais Estendidos do XXV Simpósio Brasileiro de Sistemas Multimídia e Web. Workshop de Ferramentas e Aplicações. Rio de Janeiro, Brasil: Sociedade Brasileira de Computação; 2019. p. 97-101
Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering [Internet]. 2017 [cited 2021 Dec 22]; 164. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1537511017302544
Shurouq Hijazi AP, Burak Kantarci DA, Soyata T. Research directions in cloud-based decision support systems for health monitoring using internet-of-things driven data acquisition. International Journal of Services Computing [Internet]. 2016 [cited 2022 Jan 11];4(4):18-34. Available from: http://www.hipore.com/stsc/2016/IJSC-Vol4-No4-2016-pp18-34.pdf
Nigam KU, Chavan AA, Ghatule SS, Barkade VM, editors. IOT-BEAT: An intelligent nurse for the cardiac patient. 2016 International Conference on Communication and Signal Processing (ICCSP); 6-8 April 2016; Melmaruvathur, India. USA: IEEE; 2016
Islam N, Faheem Y, Din IU, Talha M, Guizani M, Khalil M. A blockchain-based fog computing framework for activity recognition as an application to e-Healthcare services. Future Generation Computer Systems [Internet]. 2019 [cited 2021 Dec 21]; 100. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0167739X19309860
Borujeni AM, Fathy M, Mozayani N. A hierarchical, scalable architecture for a real-time monitoring system for an electrocardiography, using context-aware computing. Journal of biomedical informatics. 2019;96:[about 81 screen].
Mell P, Grance T. The NIST definition of cloud computing. USA: National Institute of Standards and Technology, US Department of Commerce; 2011
Marinescu DC. Cloud computing: theory and practice. USA: Morgan Kaufmann; 2018
Puliafito C, Mingozzi E, Longo F, Puliafito A, Rana O. Fog computing for the internet of things: A Survey. ACM Transactions on Internet Technology. 2019;19(2):[about 41 p.]
Negash B, Gia TN, Anzanpour A, Azimi I, Jiang M, Westerlund T, et al. Leveraging Fog Computing for Healthcare IoT. In: Fog Computing in the Internet of Things [Internet]. Springer International Publishing; 2017 [cited 2021 Dec 22]. Available from: https://www.researchgate.net/publication/315552535_Leveraging_Fog_Computing_for_Healthcare_IoT
Rahmani AM, Gia TN, Negash B, Anzanpour A, Azimi I, Jiang M, et al. Exploiting smart e-Health gateways at the edge of health care Internet of Things - A fog computing approach [abstract]. Future Generation Computer System [Internet]. 2017 [cited 2021 Dec 21]; 78 (Part 2). Available from: https://www.sciencedirect.com/science/article/abs/pii/S0167739X17302121
Bonomi F, Milito R, Zhu J, Addepal S, editors. Fog Computing and Its Role in the Internet of Things. MCC '12: Proceedings of the first edition of the MCC workshop on Mobile cloud computing; 17 August 2012; Helsinki Finland. New York, United States of America: Association for Computing Machinery; 2012. p. 13-5.
Guo X, Duan X, Gao H, Huang A, Jiao B. An ECG Monitoring and Alarming System Based On Android Smart Phone. Communications and Network [Internet]. 2013 [cited 2021 Dec 22];5:584-9. Available from: https://www.scirp.org/pdf/_2013100710411977.pdf
Mohammed J, Thakral A, Ocneanu AF, Jones C, Lung C-H, Adler A, editors. Internet of Things: Remote Patient Monitoring Using Web Services and Cloud Computing. Internet of Things. USA: IEEE Computer Society; 2014
Jokic S, Jokic I, Krco S, Delic V. ECG for Everybody: Mobile Based Telemedical Healthcare System. In: Loshkovska S, Koceski S, editors. International Conference on ICT Innovations 2015, Advances in Intelligent Systems and Computing. Vol 399. Springer International Publishing Switzerland; 2015
Constant N, Douglas-Prawl O, Johnson S, Mankodiya K, editors. Pulse-Glasses: An unobtrusive, wearable HR monitor with Internet-of-Things functionality. 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN); 9-12 June; Cambridge, USA. USA: IEEE; 2015
Gia TN, Jiang M, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H, editors. Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction. Computer and Information Technology. USA: IEEE Computer Society; 2015
Yi W-J, Saniie J. Patient Centered Real-Time Mobile Health Monitoring System. E-Health Telecommunication Systems and Networks [Internet]. 2016 [cited 2022 Jan 11];5:75-94. Available from: https://www.researchgate.net/publication/312599989_Patient_Centered_Real-Time_Mobile_Health_Monitoring_System
Zhou J, Riekki J, Zhang W, Qiu T, editors. IHRV: cloud-based mobile heart rate variability monitoring system. 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData); 15-18 Dec 2016; Chengdu, China. USA: IEEE; 2016
Singh RK, Sarkar A, Anoop C, editors. A health monitoring system using multiple non-contact ECG sensors for automotive drivers. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings; 23-26 May 2016; Taipei, Taiwan. USA: IEEE; 2016
Rizqyawan MI, Amri MF, Pratama RP, Turnip A, editors. Design and development of Android-based cloud ECG monitoring system. 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE); 19-20 October 2016; Semarang, Indonesia. USA: IEEE; 2016
Jindal V, editor. Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise. MOBILESoft '16: Proceedings of the International Conference on Mobile Software Engineering and Systems; 2018 May 27-8; Gothenburg Sweden. New York, USA: Association for Computing Machinery (ACM); 2016
Yang Z, Zhou Q, Lei L, Zheng K, Xiang W. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. Mobile & Wireless Health [Internet]. 2016 [cited 2022 Jan 11];40:[about 11 p.]. Available from: https://link.springer.com/content/pdf/10.1007/s10916-016-0644-9.pdf
Pinto S, Cabral J, Gomes T. We-Care: An IoT-based Health Care System for Elderly People2017. 2017 IEEE International Conference on Industrial Technology (ICIT); 22-25 March 2017; Toronto, ON, Canada. USA: IEEE
Wu T, Wu F, Redouté J-M, Yuce MR. An Autonomous Wireless Body Area Network Implementation Towards IoT Connected Healthcare Applications. USA: IEEE Access [Internet]. 2017 [cited 2022 Jan 11]; 5: 11413- 22. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7950903
Gusev M, Stojmenski A, Guseva A, editors. ECGalert: A heart attack alerting system. International Conference on ICT Innovations. USA: Springer Publishing; 2017
Kumar PM, Gandhi UD. A novel three-tier Internet of Things architecture with machine learning algorithm for early detection of heart diseases. Computers Electrical Engineering. 2018;65:222-35
Priyanka A, Parimala M, Sudheer K, Thippareddy, Kaluri R, Lakshmanna K, et al. Big data based on healthcare analysis using IOT devices. IOP Conference Series: Materials Science and Engineering (2017); 2017 Aug 25-27; Busan, Korea. England: IOP Sciences; 2017
Kassem A, Yıldırım UO, Turğut KA, Wiil UK, Özyer T, Alhajj R, editors. Effectiveness of Mobile Electrocardiogram in Healthcare: From Mobile Application and Development to Community Reaction. ASONAM '17: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; July 31-August 3 2017; Sydney, Australia. New York, USA: Association for Computing Machinery (ACM); 2017
Amato A, Coronato A, editors. An IoT-Aware Architecture for Smart Healthcare Coaching Systems. International Conference on Advanced Information Networking and Applications. USA: IEEE Computer Society; 2017
Assaba C, Gite S. IOT Based HealthCare Remote Monitoring and Context-aware Appointment System. International Journal of Current Engineering and Technology [Internet]. 2017[cited 2022 Jan 11];7(6):2057-61. Available from: Available from: https://inpressco.com/wp-content/uploads/2017/12/Paper212057-2061.pdf
Azimi I, Anzanpour A, Rahmani AM, Pahikkala T, Levorato M, Liljeberg P, et al. HiCH: Hierarchical Fog-Assisted Computing Architecture for Healthcare IoT. ACM Transactions on Embedded Computing Systems [Internet]. 2017 [cited 2022 Jan 11];16: [about 20 p. ]. Available from: Available from: https://dl.acm.org/doi/pdf/10.1145/3126501
Dubey H, Monteiro A, Constant N, Abtahi M, Borthakur D, Mahler L, et al. Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications. In: Handbook of Large-Scale Distributed Computing in Smart Healthcare [Internet]. Springer International Publishing; 2017 [cited 2022 Jan 11]. p. 11-25. Available from: Available from: https://www.researchgate.net/publication/311274279_Fog_Computing_in_Medical_Internet-of-Things_Architecture_Implementation_and_Applications
Nashif S, Raihan R, Islam R, Imam MH. Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System. World Journal of Engineering and Technology [Internet]. 2018 [cited 2022 Jan 11];6:854-73. Available from: Available from: https://www.researchgate.net/publication/329096802_Heart_Disease_Detection_by_Using_Machine_Learning_Algorithms_and_a_Real-Time_Cardiovascular_Health_Monitoring_System
Bin Rais RN, Akbar MS, Aazam M, editors. Fog-Supported Internet of Things (IoTs) Architecture for Remote Patient Monitoring Systems using Wireless Body Area Sensor Networks. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech); 2018 Aug 12-15; Athens, Greece. USA: IEEE Computer Society; 2018
Rodrigues Barata JJ, Munoz R, de Carvalho Silva RD, Rodrigues JJ, de Albuquerque VH. Internet of Things Based on Electronic and Mobile Health Systems for Blood Glucose Continuous Monitoring and Management. USA: IEEE Access. 2019;7:175116-25
Scrugli MA, Loi D, Raffo L, Meloni P, editors. A Runtime-Adaptive Cognitive IoT Node for Healthcare Monitoring. CF '19: Proceedings of the 16th ACM International Conference on Computing Frontiers; 2019 Apr 30-May 2; Alghero, Italy. New York, USA: Association for Computing Machinery (ACM); 2019
Tuli S, Basumatary N, Gill SS, Kahani M, Arya RC, Wander GS, et al. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems. 2020;104:187-200
Keshan N, Parimi P, Bichindaritz I, editors. Machine learning for stress detection from ECG signals in automobile drivers. 2015 IEEE International Conference on Big Data (Big Data); 2015 Oct 29 - Nov 1; Santa Clara, USA. USA: IEEE; 2015
Choi E, Bahadori MT, Song L, Stewart WF, Sun J, editors. GRAM: graph-based attention model for healthcare representation learning. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2017 Aug 13-17; Halifax NS, Canada. New York, USA: Association for Computing Machinery; 2017. p. 787-95
Mozos OM, Sandulescu V, Andrews S, Ellis D, Bellotto N, Dobrescu R, et al. Stress detection using wearable physiological and sociometric sensors. International Journal of Neural Systems. 2017;27(02)
Egilmez B, Poyraz E, Zhou W, Memik G, Dinda P, Alshurafa N, editors. UStress: Understanding college student subjective stress using wrist-based passive sensing. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops); 2017 Mar 13-7; Kona, Big Island, USA. USA: IEEE; 2017
Ravı D, Wong C, Lo B, Yang GZ. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices. Journal of Biomedical and Health Informatics [Internet]. 2017 [cited 2022 Jan 11];21(1):56-64. Available from: Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7797232
Gjoreski M, Luštrek M, Gams M, Gjoreski H. Monitoring stress with a wrist device using context. Journal of biomedical informatics [Internet]. 2017 [cited 2021 Dec 23];73:159-70. Available from: Available from: https://www.sciencedirect.com/science/article/pii/S1532046417301855
Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. Omics: a journal of integrative biology [Internet]. 2018 [cited 2021 Dec 23];22(10):630-6. Available from: Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207407/
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine [Internet]. 2018 [cited 2022 Jan 11];1: [about 10 p. ] . Available from: Available from: https://www.nature.com/articles/s41746-018-0029-1.pdf
Fan X, Yao Q, Cai Y, Miao F, Sun F, Li Y. Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation From Single Lead Short ECG Recordings. Journal of Biomedical and Health Informatics [Internet]. 2018 Nov [cited 2022 Jan 11[;22(6):1744-53. Available from: Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8428414
Azimi I, Takalo-Mattila J, Anzanpour A, Rahmani AM, Soininen JP, Liljeberg P, editors. Empowering healthcare iot systems with hierarchical edge-based deep learning. 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE); 2018 Sep 26-8; Washington, DC, USA. USA: IEEE; 2018
Ayatollahi H, Gholamhosseini L, Salehi M. Predicting coronary artery disease: a comparison between two data mining algorithms. BMC public health. 2019;19(1):1-9.
Amin MS, Chiam YK, Varathan KD. Identification of significant features and data mining techniques in predicting heart disease. Telematics Informatics. 2019;36:82-93
Khan MA. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier. IEEE Access. 2020;8:34717-27.
Dai H-N, Zheng Z, Zhang Y. Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal. 2019;6(5):8076-94
Esposito C, De Santis A, Tortora G, Chang H, Choo K-KR. Blockchain: A panacea for healthcare cloud-based data security and privacy? IEEE Cloud Computing. 2018;5(1):31-7
Griggs KN, Ossipova O, Kohlios CP, Baccarini AN, Howson EA, Hayajneh T. Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. Journal of Medical Systems. 2018;42(7)
Bhuiyan MZA, Zaman A, Wang T, Wang G, Tao H, Hassan MM, editors. Blockchain and big data to transform the healthcare. Proceedings of the International Conference on Data Processing and Applications; 2018 May 12-4; Guangzhou, China. New York, USA: ACM; 2018