2021, Número 3
<< Anterior Siguiente >>
Rev Cubana Farm 2021; 54 (3)
Actualidad y perspectivas de los antimicrobianos naturales
Díaz PL, Suárez PY, Rubio OA, Travieso NMC
Idioma: Español
Referencias bibliográficas: 50
Paginas: 1-22
Archivo PDF: 527.27 Kb.
RESUMEN
Introducción: La resistencia de los microorganismos a los antibióticos constituye
uno de los más graves problemas de salud, por lo que la búsqueda de principios
activos antimicrobianos constituye una prioridad de la investigación global. En este
sentido, las fuentes naturales (plantas, microorganismos, algas, entre otros.)
resultan de gran interés por la gran diversidad de compuestos químicos o
metabolitos secundarios que ofrecen y por las probadas propiedades
antimicrobianas que poseen muchos de ellos.
Objetivo: Realizar una actualización de los antimicrobianos naturales (derivados
de plantas y microrganismos) como potenciales principios activos para el
enfrentamiento de la resistencia antimicrobiana.
Métodos: Investigación cualitativa a partir de la revisión sistemática de la
literatura científica, como la Web de la Ciencia y Pubmed, sobre la base de
palabras clave relacionadas con la resistencia antimicrobiana y su impacto
negativo en la salud mundial, además de los avances en la investigación de los
productos naturales en la solución a esta problemática.
Conclusiones: Las plantas y los microorganismos están entre los biorecursos más
estudiados en la búsqueda de antimicrobianos eficaces y seguros para contribuir a
la solución del gran problema que representa la resistencia antimicrobiana, por
poseer una gran variedad de compuestos químicos y metabolitos secundarios con
probadas propiedades frente a una gran variedad de patógenos (bacterias, hongos
y virus). El manejo y uso sostenible de estas fuentes naturales son de alta prioridad
con vistas a su aprovechamiento industrial sin afectar el medio ambiente.
REFERENCIAS (EN ESTE ARTÍCULO)
Bello FZ, Cozme RY, Pacheco PY, Mejías MC, Gallart CA. Resistenciaantimicrobiana de Staphylococcus coagulasa positiva en cultivo de lesión en niñosde Las Tunas. Revista Electrónica Dr. Zollo Marinello Vidaurreta. 2018 [acceso06/08/2019];43(2). Disponible en:http://www.revzoilomarinello.sld.cu/index.php/zmv/article/view/1277
Quiñones PD. Resistencia antimicrobiana: evolución y perspectivas actualesante elenfoque "Una salud". Revista Cubana de Medicina Tropical. 2017 [acceso20/07/2019];69(3):1-17. Disponible en:http://revmedtropical.sld.cu/index.php/medtropical/article/view/263
Gupta D, Chauhan P. Green Synthesis of Silver Nanoparticles Involving Extractof Plants of Different Taxonomic Groups. Journal of Nanomedicine Research.2017;5(2):00110. DOI: 10.15406/jnmr.2017.05.00110
Serra MÁ. La resistencia microbiana en el contexto actual y la importancia delconocimiento y aplicación en la política antimicrobiana. Revista Habanera deCiencias Médicas. 2017 [acceso 26/10/2019];16(3):402-419. Disponible en:http://www.revhabanera.sld.cu/index.php/rhab/article/view/2013
Macri M, Rubinstein A, Kaler M, de la Mota L. Guía de medicamentosesenciales para el PNA antimicrobianos. República de Argentina: CoberturaUniversal de Salud; 2017. p. 1-181
World Health Organization. Worldwide country situation analysis: response toantimicrobial resistance Ginebra: WHO. página de inicio en internet . [acceso02/05/2019]. Disponible en: http://www.who.int/drugresistance/en/
Fariña N. Resistencia bacteriana: un problema de salud pública mundial dedifícil solución. Memorias del Instituto de Investigaciones en Ciencia de la Salud.2016;14(1):4-5. DOI: 10.18004/Mem.iics/1812-9528/2016.014(01)04-005
Angeles E. Uso racional de antimicrobianos y resistencia bacteriana ¿haciadóndevamos? Revista Médica Herediana. 2018;29(7):3-4. DOI: 10.20453/mh.v29i1.3253
CDC. Antibiotic Resistance Threats in the United States, 2019 Atlanta, GA:U.S. Department of Health and Human Services, 2019 [acceso 23/09/2020].Disponible en: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-arthreats-report-508.pdf
Organización de las Naciones Unidas para la Alimentación y la Agricultura. Elplan de acción de la FAO sobre la Resistencia a los Antimicrobianos 2016-2020;2016. p. 1-14 [acceso 22/07/2019]. Disponible en:http://www.fao.org/3/i5996s/i5996s.pdf
Puig PY, Leyva CV, Aportela LN, Camejo JA, Tejedor AR. Resistenciaantimicrobiana en bacterias aisladas de pescados y mariscos. Revista Habanerade Ciencias Médicas. 2019 [acceso 02/05/2020];18(3):500-12. Disponible en:http://www.revhabanera.sld.cu/index.php/rhab/article/view/2440
Organización Mundial de Sanidad Animal. Lista de agentes antimicrobianosimportantes para la medicina veterinaria. Francia: OIE; 2019. p. 1-9 [acceso04/06/2020]. Disponible en:https://www.oie.int/fileadmin/Home/esp/Our_scientific_expertise/docs/pdf/AMR/E_OIE_Lista_antimicrobianos_Julio2019.pdf
Travieso MC, Rubio OA, Pino PO. Las nanopartículas a partir de plantas comobase para el diseño de nuevos antimicrobianos. Rev Cubana Farm. 2017 [acceso09/05/2019];51(4):1-20. Disponible en:http://www.revfarmacia.sld.cu/index.php/far/article/view/263/178
World Health Organization. 2019 Antibacterial Agents in Clinical Developmentananalisis of the antibacterial clinical development pipeline. Geneva: WHO; 2019[acceso 11/05/2020]. Disponible en: https://www.who.int/publications-detailredirect/9789240000193
Abdalla MA, McGaw LJ. Bioprospecting of South African Plants as a UniqueResource for Bioactive Endophytic Microbes. Frontiers Pharmacology.2018;9(456):1-18. DOI: 10.3389/fphar.2018.00456
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis oftherapeutic argets for SARS-CoV-2 and discovery of potential drugs bycomputational methods. Acta Pharmaceutica Sinica B. 2020;10(5):766-88. DOI:10.1016/j.apsb.2020.02.008
Maldonado C, Paniagua ZN, Bussmann RW, Zentero RF, Fuentes AF. Laimportancia de las plantas medicinales, su taxonomía y la búsqueda de la cura ala enfermedad que causa el coronavirus (COVID-19). Ecología en Bolivia. 2020[acceso 08/11/2020];55(1):1-5. Disponible en:http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1605-25282020000100001&lng=es
Espada DL, Ferrer SA, Padró RL, Arias RL, León DL. Dendropanax arboreus:estudio fitoquímico de la savia del tronco. Revista Cubana de Química. 2020[acceso 23/11/2020];32(1):74-87. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212020000100074&lng=es&tlng=es
Ahn K. The worldwide trend of using botanical drugs and strategies fordeveloping global drugs. BMB Reports. 2017;50(3):111-16. DOI:10.5483/bmbrep.2017.50.3.221
Sierra BE, León PM. Terapia antibacteriana : origen y evolución en el tiempo.Rev Méd Electrón. 2019 [acceso 02/05/2020];41:1300-09. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1684-18242019000501300
Tambo E, Khater EI, Chen J, Bergquist R, Zhou X. Nobel prize for theartemisinin and ivermectin discoveries : a great boost towards elimination of theglobal infectious diseases of poverty. Infectious Diseases of Poverty.2015;4(58):1-8. DOI: 10.1186/s40249-015-0091-8
Su X, Miller LH. The discovery of artemisinin and the Nobel Prize inPhysiology or Medicine. Science China Life Sciences. 2015;58(11):1175-79. DOI:10.1007/s11427-015-4948-7
Shen B. A New Golden Age of Natural Products Drug Discovery. Cell.2015;163(6):1297-1300. DOI: 10.1016/j.cell.2015.11.031
Jackson N, Czaplewski L, Piddock LJ V. Discovery and development of newantibacterial drugs: learning from experience? Journal of AntimicrobialChemotherapy. 2018;73:1452-59. DOI: 10.1093/jac/dky019
Chassagne F, Samarakoon T, Porras G, Lyles J, Dettweiler M, Marquez L, etal. A Systematic Review of Plants with Antibacterial Activities: A Taxonomic andPhylogenetic Perspective. Frontiers in Pharmacology. 2021;11:1–29. DOI:10.3389/fphar.2020.586548
Rubio OA, Travieso NMC, Riverón AY, Martínez VA, Peña RJ, Espinosa CI, etal. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cubasobre cepas de Salmonella enterica. Rev Salud Anim. 2018 [acceso09/09/2019];40(3):1-10. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-570X2018000300004&lng=es
Belén VM, Serra M, Andreatta AE. Actividad antimicrobiana de diversosaceites esenciales en bacterias benéficas ,patógenas y alterantes de alimentosantimicrobial. Revista Tecnología y Ciencia. 2020;92(37):92-100. DOI:10.33414/rtyc.37.92-100.2020
Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, ArockiaswamyW, Sivaperumal S. Formulation of Carica papaya latex-functionalized silvernanoparticles for its improved antibacterial and anticancer applications. Journalof Molecular Liquids. 2016;219:232-38. DOI: 10.1016/j.molliq.2016.03.038
Untol PR, Zavaleta EG, Saldaña JJ, Blas CW. Efecto in vitro de extractoshidroalcohólicos de Mangifera indica, Tamarindus indica y Cassia angustifoliasobre elcrecimiento de Salmonella typhi y Escherichia coli. Arnaldoa. 2019;26(2):713-24.DOI: https://doi.org/10.22497/arnaldoa.262.26213
Maldonado C, Barnes CJ, Cornett C, Holmfred E. Phylogeny Predicts theQuantity of Antimalarial Alkaloids within the Iconic Yellow Cinchona Bark(Rubiaceae: Cinchona calisaya). Frontiers in Plant Science. 2017;8(391):1-16.DOI: https://doi.org/10.3389/fpls.2017.0039
Moromi NH, Ramos PD, Villavicencio GJ, Martínez CE, Mendoza RA, ChavezAE, et al. Estudio in vitro del Efecto Antibacteriano de la Oleorresina deCopaifera reticulata y el Aceite Esencial de Origanum majoricum Frente aStreptococcus mutans y Enterococcus Faecalis Bacterias de Importancia enPatologías Orales. International Journal of Odontostomatology. 2018 [acceso02/10/2020];12(4):355-61. Disponible en:http://www.ijodontostomatology.com/wpcontent/uploads/2018/12/2018_v12n4_004.pdf
Pastorino G, Cornara L, Rodrigues F, Oliveira MB. Liquorice (Glycyrrhizaglabra): A phytochemical and pharmacological review. Phytotherapy Research.2018;32:2323-39. DOI: 10.1002/ptr.6178
Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, et al. AntiviralActivity Against Infectious Bronchitis Virus and Bioactive Components ofHypericum perforatum L. Frontiers in Pharmacology. 2019;10(1272):1-22. DOI:https://doi.org/10.3389/fphar.2019.01272
Al-Snafi AE. A review on Lawsonia inermis : a potential medicinal plant.International Journal of Current Pharmaceutical Research. 2019;11(5):1-13. DOI:10.22159/ijcpr.2019v11i5.35695
Aballa RM, Elfadil AA. Antibacterial Activity and Phytochemical Constituentsof Cinnamomum verum and Matricaria chamomilla from Sudan. Bio Bulletin.2016;2(2):08-12.
Malik MA, Bhat SA, Rehman MU, Sidique S, Akhoon ZA, Shrivastava P.Phytochemical analysis and antimicrobial activity of Rheum emodi (Rhubarb)rhizomes. The Pharma Innovation Journal. 2018 [acceso 03/10/2019];7(5):17-20.Disponible en:https://www.thepharmajournal.com/archives/2018/vol7issue5/PartA/7-4-126-289.pdf
Heredia OC, Orozco GM, Pérez RC, Martín GD. Actividad antibacteriana deextractos alcohólicos de hojas de Solanum dolichosepalum (Bitter). InformadorTécnico. 2019;83(2):121-30. DOI: 10.23850/22565035.2061
Jackson N, Czaplewski L, Piddock LJ. Discovery and development of newantibacterial drugs: learning from experience? Journal of AntimicrobialChemotherapy. 2018;73:1452-59. DOI: 10.1093/jac/dky019
Uribe MS, Durán LM, Caraballo MR. Evaluación de la actividad in vitro decombinaciones antibacterianas frente a Staphylococcus aureus meticilinoresistente. Rev Cubana Farm. 2020 [acceso 22/11/2020];53(1):1-16. Disponibleen: www.revfarmacia.sld.cu/index.php/far/article/view/109
Fajardo CA, Urbieta SE, Gallego MC. Dalbavancina en el tratamiento de lainfección de piel y tejidos blandos. Farmacia Hospitalaria. 2017;41(5):642-3. DOI:10.7399/fh.10800
Battaglini D, Motos A, Li Bassi G, Yang H, Pagliara F, Yang M, et al. Efficacyof telavancin in comparison to linezolid in a porcine model of severe methicillinresistantStaphylococcus aureus (MRSA) pneumonia. Antimicrobial Agents andChemotherapy. 2020;16;65(1):e01009-20 DOI: 10.1128/AAC.01009-20
Hise NW Van, Chundi V, Didwania V, Anderson M, Mckinsey D, Roig I, et al.Treatment of acute osteomyelitis with once weekly Oritavancin: A two year ,multicenter, retrospective study. Drugs - Real World Outcomes. 2020 [acceso02/10/2020];7(1):41-5. DOI: 10.1007/s40801-020-001957
Koch E, Vogel S, inventors. Dr Willmar Schwabe GmbH and Co KG assigne.Extracts made from seeds of Aframomum species and their use. European PatentOffice patent EP3299026A1. 2016. 22 sep. 2016 [acceso 22/10/2020] Disponibleen: https://patents.google.com/patent/EP3299026A1/en
Seongpil K, Myung-seon K, Hee-sun K, Seul J, inventors. The composition ofbotanical preservatives which consist of White Willow Bark, Aspen Bark,Azadirachta Indica Leaf and Atremisia Annua extracts. South Korea patentKR101818146B1. 01 dic. 2018. [acceso 22/10/2020]. Disponible en:https://patents.google.com/patent/KR101818146B1/en
Bunka D, Hikari SD, Hikari SR, inventors. Antimicrobial herbal composition,method for producing and using the same. Japan patent JP6626902B2. 2019. 25dic. 2019 [acceso 22/10/2020]. Disponible en:https://patents.google.com/patent/JP6626902B2
Pandey K, Shevkar C, Bairwa K, Kate AS. Pharmaceutical perspective onbioactives from Alstoniascholaris: ethnomedicinal knowledge, phytochemistry,clinical status, patent space, and future directions. Phytochemistry Reviews.2020;19:191-233. DOI: 10.1007/s11101-020-09662-z
Mandhare A, Banerjee P, Pande A, Gondkar A. Jackfruit (Artocarpusheterophyllus): A Comprehensive Patent Review. Current Nutrition & FoodScience. 2020;16(5):644-65. DOI:https://doi.org/10.2174/1573401315666190730120759
Matthew WC. Teixobactin: a novel anti-infective agent. Expert Review ofAnti-infective Therapy. 2019 [acceso 06/02/2020];17(1):1-3. DOI:10.1080/14787210.2019.1550357
Roggia RA, Menezes BP, Mateus MI, Rejame AA, Mayumi NV, Rodrigues DA, etal. Flavones biotransformation of citrus by-prducts improves antioxidant and ACEinhibitory activities in vitro. Food Bioscience. 2020 [acceso 22/10/2020]. DOI:10.1016/j.fbio.2020.100787
Nahar K, Aziz S, Shahriar BM, Haque MA, Al-Reza S. Synthesis andcharacterization of Silver nanoparticles from Cinnamomum tamala leaf extractand its antibacterial potential. International Journal Nanomedicie Dimensional.2020 [acceso 22/03/2020];11(1):88-98. Disponible en:http://www.ijnd.ir/article_667484.html